MICROFACIES ANALYSIS AND DIAGENETIC FABRIC OF EOCENE CHORGALI FORMATION, TALHAR SECTION, PAKISTAN

By

SYED HUZAIFA HUSSAIN

Department of Earth and Environmental Sciences Bahria University, Islamabad

2017

MICROFACIES ANALYSIS AND DIAGENETIC FABRIC OF EOCENE CHORGALI FORMATION, TALHAR SECTION, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of MS in Geology

SYED HUZAIFA HUSSAIN

Department of Earth and Environmental Sciences Bahria University, Islamabad

2017

ABSTRACT

The Chorgali Formation of Eocene age is composed of medium to thick bedded limestone with shale intercalations. The study area for this research work Chorgali Formation has been from one designated section that is Talhar section. The Talhar section is located in Islamabad. Thirty one (31) rock samples in Talhar area were collected in the field, the microscopic study revealed four (4) microfacies with discrete texture, fossils content and allochem types. The microfacies are Larger foraminiferal mudstone to wackestone microfacies, Larger benthic wackestone microfacies, bioclastic wackestone microfacies and Nummulitic wackestone microfacies. The depositional texture and faunal association indicates that the microfacies represent deposition in a low energy that is inner to middle shelf settings. The further analysis on Chorgali Formation indicates that formation was subjected to numerous diagenetic changes mostly showing the compaction, stylolitization, aragonite to calcite transformation (neomorphism), tectonically induced fracturing and calcite veins passing from marine diagenesis to meteoric diagenesis through burial diagenesis. Reservoir characteristics porosity from visual estimations suggested that the type of porosity is fractured porosity and average porosities in terms of percentages are 22.7%, 3.62%, 8.3%, 17.4% and 4.3% respectively. SEM analysis indicates type of porosity is vuggy. X-ray Diffraction analysis shows that the limestone of Chorgali Formation contains quartz, calcite and dolomite.

ACKNOWLEDGEMENTS

I gratefully thanks to Almighty ALLAH, who blessed me with the powerful strength, courage, knowledge and enable to overcome with all the difficulties during the completion of my research work. Peace and blessings of ALLAH be upon his final Prophet Hazrat MUHAMMAD (S.A.W), who enabled to recognize our creator and source of guidance forever for the whole humanity.

It is a great pleasure for me to acknowledge the assistance and contributions of many individuals in making this thesis a success. First and foremost, I would like to thank my supervisor, Mr. Mustafa Yar, for his assistance, ideas, and feedbacks during the process in doing this dissertation. Without his guidance and support, this dissertation cannot be completed on time.

I would like to say thanks to Dr. Professor Tahseenullah Khan, HOD at Earth & Environmental Science department, Bahria University Islamabad for his guidance and fully support.

Special thanks to Mr. Saqib Mehmood, Senior Assistant Professor of the department for his cooperation. I am also thankful to Mr. Waqar Ahmed and Mr. Syed Waqas Haider, students of the department for his continuous guidance in petrographic work. I also express my thanks to all my teachers who made me able to conduct research study.

Last but not least, I wish to express my sincere gratitude to my family for their encouragement and moral support.

CONTENTS

Page

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
CONTENTS	iii
FIGURES	vi
TABLES	viii

CHAPTER 1

INTRODUCTION

1.1	Introduction	1
1.2	Location of study area	1
1.3	Accessibility to study area	1
1.4	Previous work	2
1.5	Methodology	3
1.6	Aims and objectives of research	3

CHAPTER 2

TECTONIC AND GEOLOGICAL SETTINGS

2.1	Tectonic and geological setting of study area	4
2.2	Pakistan tectonics settings	6
2.2.1	Main Karakoram Thrust	6
2.2.2	Kohistan Island Arc	7
2.2.3	Main Mantle Thurst	7
2.2.4	Northern Deformed Fold and Thurst Belt	7
2.4.5	Main Boundary Thurst	7
2.4.6	Southern Deformed Fold and Thurst Belt	8
2.4.7	Salt Range Thurst and Trans Indus Ranges	8
2.4.8	Punjab Foredeep	8

CHAPTER 3

STRATIGRAPHY OF AREA

3.1	Introduction	9
3.2	Stratigraphy of Talhar area	10
3.2.1	Samanasuk Formation	10
3.2.2	Kawagarh Formation	11
3.2.3	Lockhart Formation	11
3.2.4	Hangu Formation	12
3.2.5	Patala Formation	12
3.2.6	Margalla Hill Limestone	12
3.2.7	Chorgali Formation	13
3.2.8	Kuldana Formation	14
3.2.9	Murree Formation	15

CHAPTER 4

MICROFACIES AND DIAGENETIC FABRIC OF CHORGALI FORMATION

4.1	Introduction	16
4.2	Microfacies description	16
4.3	Limestone microfacies of Chorgali Formation of Talhar section	17
4.3.1	Larger foraminiferal mudstone to wackestone microfacies	17
4.3.1.1	Plate 4.1 description	19
4.3.2	Larger benthic foraminiferal wackestone microfacies	19
4.3.2.1	Plate 4.2a and 4.2b description	22
4.3.3	Bioclastic wackestone microfacies	23
4.3.4	Nummilitic wackestone microfacies	24
4.3.4.1	Plate 4.3 description	25
4.5	Diagenetic Fabric	25
4.5.1	Micritization	25
4.5.2	Neomorphism	25
4.5.3	Stylolite	26

4.5.4	Compaction	26
4.5.5	Dolomitization	26
4.5.6	Fractures	26
4.5.7	Plate 4.4 description	28
4.6	Depositional environment	28
4.7	Reservoir characteristics	29
4.7.1	Visual estimation method	29
4.7.2	Scanning electron microscopy (SEM)	33
4.6.2.1	Sample TCL-6	33
4.6.2.2	Sample TCL-21	35

CHAPTER 5

GEOCHEMISTRY

5.1	Introduction	36
5.2	X-Ray Diffraction analysis	36
5.2.1	Sample TCL-13	36
5.2.2	Sample TCL-18	38
	CONCLUSIONS	41
	REFERENCES	42

	FIGURES	Page
Figure 1.1	Accessibility map of study area (map is generated using	2
	Google Earth and Arc GIS 10.1).	
Figure 2.1	Tectonic evolutionary stages of Indian plate.	4
Figure 2.2	Tectonic map of northern Pakistan highlighting study	6
	sections (Gansser, 1980).	
Figure 3.1	Photomicrograph of Chorgali Formation with upper	9
	contact with Kuldana Formation of Talhar section.	
Figure 3.2	Intercaltions of Shale with Limestone in Chorgali	9
	Formation exposed in Talhar area.	
Figure 3.3	Samana Suk Formation exposed in Talhar area.	11
Figure 3.4	Patala Formation exposed in Talhar area.	12
Figure 3.5	Margalla Hill Limestone exposed in Talhar area.	13
Figure 3.6	Chorgali Formation exposed in Talhar area.	14
Figure 3.7	Kuldana Formation exposed in Talhar area.	15
Plate 4.1	Photomicrographs of Larger Foraminiferal mudstone to	18
	wackestone microfacies. A: bioclasts (Bi), stylolite (sty),	
	calcite filled vien (Cf) and micrite (m) are visible. B, C	
	and D: Lockhartia (La) and micrite (m). E: Ranikotalia	
	sindensis (Rs), bioclasts (Bi) and micrite (m). F:	
	Planktons (P), Lockhartia (La) and micrite (m) are	
	identified.	
Plate 4.2a	Photomicrographs of Larger benthic wackestone	20
	microfacies. A and C: Nummilites Atacius (Na), bioclasts	
	(Bi), Lockhartia (La), neomorphism (n) and micrite (m)	
	are visible. B and E: Lockhartia (La) and micrite (m). D:	
	Nummilites mammilatus (Nm), neomorphism (n) and	
	micrite (m). F: Nummilites Atacius (Na) and micrite (m)	
	are identified.	
Plate 4.2b	Photomicrographs of Larger Benthic wackestone	21
	microfacies. G and I: calcite filled vein (Cf), Lockhartia	
	(La) and micrite (m) are visible. H and J: Lockhartia (La)	

and micrite (m). K and L: Nummilites Atacius (Na),

neomorphism (n) and micrite (m) are identified.

24

- Plate 4.3 Photomicrographs of bioclastic wackestone (A), (B), (E) and (F) and Nummilitic wackestone sub-microfacies (C) and (D). A: Assilina Laminosa (As), bioclast (Bi), planktons (P) and micrite (m) are identified. B: dolomitization (Do), bioclast (Bi) and micrite (m). C: Nummilites Globolus (Ng), bioclast (B), planktons (P) and micrite (m). D: Nummilites Atacius (Na) and micrite (m). E: Lockhartia (La), bioclast (Bi), Planktons (P) and micrite (m). F: bioclast (Bi) and micrite (m) are visible.
- Plate 4.4 Microphographs of different diagenetic fabrics observed 27 in Chorgali Formation. A: micritization (Mc), bioclasts (Bi) and fracture (Fr) are identified. B: Lockhartia (La), calcite filled vein (Cf) and fracture (Fr), C: bioclasts (B) and spar filled vein (Sf), D: bioclasts (Bi) and internal micritization (Imc), E: dolomitization (Do) and F: bioclast (B) and compaction (Cm) are visible.
- Figure 4.5 Schematic depositional model of recognized microfacies 29 of Chorgali Formation.
- Figure 4.6 Microphotograph of sample TCL-21. 22.7% porosity is 30 observed using visual estimation method. Type of porosity is fracture porosity.
- Figure 4.7 Microphotograph of sample TCL-25. 3.62% porosity is 31 observed using visual estimation method. Type of porosity is fracture porosity.
- Figure 4.8 Microphotograph of sample TCL-26. 8.3% porosity is 31 observed using visual estimation method. Type of porosity is fracture porosity.
- Figure 4.9 Microphotograph of sample TCL-27. 17.4% porosity is 32 observed using visual estimation method. Type of porosity is fracture porosity.
- Figure 4.10 Microphotograph of sample TCL-31. 4.3% porosity is 32 observed using visual estimation method. Type of

vii

porosity is fracture porosity.

Figure 4.11	Image of SEM of TCL-6.	33
Figure 4.12	Image of SEM of TCL-6.	34
Figure 4.13	Image of SEM of TCL-6.	34
Figure 4.14	Image of SEM of TCL-21.	35
Figure 4.15	Image of SEM of TCL-21.	35
Figure 5.1	X-Ray Diffraction of TCL-13 major peaks of quartz,	37
	calcite and dolomite (magnesium).	
Figure 5.2	X-Ray Diffraction of TCL-18 major peaks of quartz,	39
	calcite and dolomite (magnesium).	

	TABLES	Page
Table 3.1	Generalized stratigraphy of Upper Indus Basin.	10
Table 4.1	Litholog of Talhar section.	17
Table 5.1	Mineralogical composition of Sample TCL-13.	38
Table 5.2	Mineralogical composition of Sample TCL-18.	40