BIOSTRATIGRAPHIC AND MICROFACIES ANALYSIS OF LATE CRETACEOUS KAWAGARH FORMATION KHAWRI KHWAR SECTION, NIZAMPUR, KHYBER PAKHTUNKHWA, PAKISTAN

BY

MUHAMMAD KHUBAB

Department of Earth and Environmental Sciences Bahria University, Islamabad

2017

BIOSTRATIGRAPHIC AND MICROFACIES ANALYSIS OF LATE CRETACEOUS KAWAGARH FORMATION KHAWRI KHWAR SECTION, NIZAMPUR, KHYBER PAKHTUNKHWA, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of MS in Geology

MUHAMMAD KHUBAB

Department of Earth and Environmental Sciences Bahria University, Islamabad

2017

CERTIFICATE OF ORIGINALITY

This is to certify that the intellectual content of the thesis

BIOSTRATIGRAPHIC AND MICROFACIES ANALYSIS OF LATE CRETACEOUS KAWAGARH FORMATION KHAWRI KHWAR SECTION, NIZAMPUR, KHYBER PAKHTUNKHWA, PAKISTAN

are the products of my own research work except, as cited properly and accurately in the acknowledgment and references, the material taken from such sources as research papers, research journals, books, internet, etc. solely to support, elaborate, compare and extend the earlier work. Further, this has not been submitted by me previously for any degree, nor it shall be submitted by me in future for obtaining any degree from this University, or any other university or institution. The incorrectness of the information, if proved at any stage, shall authorize the University to cancel my degree.

Signature: _____

Date: 17/05/2018

Name of the Research Candidate:

Muhammad Khubab

Dedicated., To my Mother and Brother, (Engr. Azmat Ali Khan)

Muhammad Khubab Khattak

ABSTRACT

The Kawagarh formation is located at Khawri Khwar section that is the part of Nizampur sub-basin. The study area is surrounded by Indus River to the east, FR Peshawar to the west, while Jehangira village and Khairabad, Attock Khurd villages are located to its north and south respectively. In study area, eight stratigraphic rock units has been dated from Late Jurassic to Eocene rocks covered with alluvium at different places. Datta Formation is being the oldest strata while, the youngest one is the Patala Formation. The Hangu Formation of Paleocene age is missing at the proposed study area. The Cretaceous age rocks are overlain unconformably by Jurassic rock units which in turn are overlain unconformably rocks of Paleocene age. The present study is primarily focused on the biostrtatigraphy, microfacies analysis and diagenetic study of Kawagarh formation. Overall three (03) microfacies has been identified that includes; Mudstone, Bioclastic mudstone and Radiolarian-biolclastic wackstone. The species of Globogerinelloids (bari, blowi and ferrolensis species), Macroglobogerinelloid bolli, Globotruncana (lapparenti and linneiana species) Hedbergella gorbachikae, Heterohelix (carinata, normani and straiate species), Radiolaria and Calcisphere are identified. On the basis of dominant mudstone microfacies, radiolarian fossils and low percentage of planktonic bioclasts, deep marine burial environment is assigned to the Kawagarh formation. The tectonic activities that had taken place in past have greater effect over the diagensis and reservoir properties especially porosity and permeability. Major diagenetic features recorded in the Kawagarh Formation are; neomorphism, dissolution, cementation, compaction both physical and chemical and pyrite precipitation. The reservoir properties of the formation is substantially decreased by physical and chemical compaction, neomorphism and dissolution, which depict that this formation doesn't act as a good reservoir at study area.

ACKNOWLEDGMENTS

The great help, assistance and encouragements from many individuals and organizations facilitated the completion of this work. It is a great pleasure for me to express my gratitude for the guidance, supervision and encouragement of my supervisor Mr. Mumtaz Ali Khan, Senior Lecturer Department of Earth and Environmental Sciences, Bahria University Islamabad. His constructive criticism and availability during this work has been invaluable. Very special thanks, of course, go to Mr. Saqib Mehmood Assistant Professor, Head of Department Prof. Dr. Tahseenullah Khan and Prof. Dr. Muhammad Zafar, Postgraduate Research Coordinator.

I would like to thank the authorities of Bahria University Islamabad for allowing me to carry out this research work and National Center of Excellence in Geology Peshawar for allowing me to use their lab for detail Petrographic Study. I am thankful to Mr. Rasheed (Dept of Geology, UOP) for his contribution by preparing the thin sections.

I am deeply indebted to my friends Syed Irfan Hashmi, Ibrahim Safi. Abdullah Khan, Majid Ullah Wazir, Aizaz Kakar (University of Peshawar), Saad Ahmad Mashwani and Shah Faisal Zeb (Bahria University Islamabad), who supported this work in variety of ways. They are thanked for providing their technical help, support, nice company and precious time during field work. Without their help, I might not be able to accomplish this work awesomely.

My deepest thanks to my all family members and relatives whose encouraging attitudes have always added to my strength requiring to complete this thoughtful project, especially my loving Mother and elder brother Engr Azmat Ali Khan, Uncle, Cousins Feroz Khan and Hashim Khan.

Last but not the least I am thankful to all my friends especially Adil Saleem (OGDCL), Shabbir Hussain, Majid Ullah, Arif Khattak, Sami Khattak, Shahid Rafique, Zohaib Afridi and Shehbaz Ali Junejo (University of Sindh Mirpurkhas), for their understanding and encouragement in my many moments of crisis. Your friendship make my life a wonderful experience.

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
CONTENTS	iii
FIGURES	vi
TABLES	viii

Page

CHAPTER 1

INTRODUCTION

1.1	Description of Study Area	1
1.2	Location of The Study Area	1
1.3	Accessibility	2
1.4	Literature Review	2
1.5	Objectives of this Study	3
1.6	Methodology	3
1.6.1	Field Work	4
1.6.2	Laboratory Work	4

CHAPTER 2

REGIONAL TECTONICS

2.1	Introduction	6
2.2	Tectonic subdivisions	6
2.2.1	Karakoram Block	7
2.2.2	Main Karakoram Thrust (MKT)	7
2.2.3	Kohistan Island Arc (KIA)	8
2.2.4	Main Mantle Thrust (MMT)	9
2.2.5	Northern Fold and Thrust Belt (NDFTB)	9
2.2.6	Main Boundary Thrust (MBT)	9
2.2.7	Southern Deformed Fold and Thrust Belt (SDFTB)	10

2.2.8	Salt Range and Trans Indus Range Thrust	10
2.2.9	Salt Range And The Punjab Plain	10
2.3	Tectonic Settings of Study Area	11

CHAPTER 3

STRATIGRAPHY

3.1	Introduction	13
3.2	Jurassic Succession	13
3.2.1.	Datta Formation	13
3.2.2	Shinawari Formation	14
3.2.3	Samana Suk Formation	14
3.3	Cretaceous Succession	16
3.3.1	Chichali Formation	16
3.3.2	Lumshiwal Formation	17
3.3.3	Kawagarh Formation	18
3.4	Paleocene Succession	20
3.4.1	Lockhart Formation	20
3.4.2	Patala Formation	21

CHAPTER 4

BIOSTRATIGRAPHY AND MICROFACIES ANALYSIS

4.1	Biostratigraphy of Kawagarh Formation	23
4.2	Microfacies Analysis of Kawagarh Formation	25
4.2.1.	Introduction	25
4.2.2	Methodology	25
4.3	Microfacies of Kawagarh Formation	26
4.3.1.	Mudstone Microfacies	26
4.3.2	Bioclastic Mudstone Microfacies	27
4.3.3	Radiolarian-Bioclastic Wackstone Microfacies	27

CHAPTER 5

DIAGENESIS AND EFFECTS ON RESERVOIR PROPERTIES

5.1	Introduction	35
5.2	Diagenetic Features	35
5.2.1	Neomorphism	35
5.2.1.1	Microspar Formation	36
5.2.2	Dissolution	37
5.2.3	Compaction	37
5.2.3.1	Physical Compaction	37
5.2.3.1.1	Micro-fratures and Veins	37
5.2.3.2	Chemical Compaction	38
5.2.3.2.1	Suture Seams	39
5.2.3.2.2	Stylolites	39
5.2.4	Cementation	40
5.2.5	Pyrite Precipitation	41
5.2.6	Effects on Reservoir Properties	42

CONCLUSIONS	45
REFERENCES	46

FIGURES

Figure 1.1.	Location & accessibility map, Yellow circle represents the	5
	study area (Map courtesy: Geological Survey of Pakistan).	
Figure 2.1.	Tectonic Map of North Pakistan (After Pegler & Das 1998).	8
Figure 2.2.	Map showing position of Kala Chitta Ranges and Study Area	12
	with respect to other mountain belts in northern Pakistan	
	(after Yeats and Hussain, 1987).	
Figure 3.1.	Photograph showing Shinawari Formation exposed at Study	15
	Area (hammer for scale).	
Figure 3.2.	Photograph Showing Samana Suk Formation exposed at	15
	Study Area. Tectonomorphic map of Pakistan (modified after	
	Kazmi & Rana, 1982).	
Figure 3.3.	Photograph showing the Chichali Formation.	17
Figure 3.4.	Photograph Showing Lumshiwal Formation (Hammer for	18
	scale).	
Figure 3.5.	Field Photograph-A: Showing Kawagarh Formation and	19
	Photograph-B; Showing fractures in Kawagarh formation at	
	Study Area.	
Figure 3.6.	Photograph Showing Fractures in Lockhart Formation.	20
Figure 3.7.	Photograph Showing Patala Foramtion exposed at Study	21
	Area.	
Figure 4.1.	(A) Globogerinelloid, (B) Globogerinelloid ferrolensis, (C)	24
	Heterohelix carinata, (D) Macroglobogerinelloid bolli, (E &F)	
	Globotruncana linneiana, (G) Calcispheres, (H) Hedbergella	
	gorbachikae, (I) Globogerinelloid barri, (J) Heterohelix	
	normani, (K) Radiolaria, (L) Globotruncana lapparenti, (M)	
	Globogerinelloid, (N) Globogerinelloid blowi, (O)	
	Heterohelix straiata.	
Figure 4.2.	Mudstone microfacies, displaying fracture filling by calcite,	28
	Calcite veins (CV), in Figs (A, B, C and D). Also reflecting	
	certain degree of precipitation of pyrite and calcite	

vi

recrystallization (CR), (PPL).

Figure 4.3. Bioclastic Mudstone microfacies, displaying calcite veins
(CV) and Clascisphere (Cls) in fig (A), Bioclast (Bcl) and
Fractures (Fr) in fig (B), pyrite (Pt) and Spicule (sp) in fig
(C), Radiolaria and Bioclast in fig (D), embedded in matrix
(M), PPL.

29

- Figure 4.4. Radiolarian-bioclastic Wackstone microfacies, displaying 30 calcite veins (CV) and Radiolarian(Rd) in fig (A), Bioclast (Bcl) and Pyrite (PT) in fig (B), Radiolaria and Stylolite (ST) in fig (D), embedded in matrix (M), PPL.
- Figure 4.5. Schematic diagram displaying depositional setting of the 31 Kawagarh Formation.
- Figure 5.1. Figure displaying calcite filled micro fractures and Calcite 38 Veins, in figs (A, B and C and D) while hairline fractures in fig (B), PPL.
- Figure 5.2. Figure displaying, A. Suture seams, B. Stylolites Swarms, C. 40Stylolites, D. Calcite Recrystallization.
- Figure 5.3. Figure showing, A. Blocky Cement, B: Microsparite, C: 41 Neomorphism, D: Microsparite.

TABLES

Page#

Table 3.1	Generalized Stratigraphy of the Study Area (Khwari Khwar Section).	22
Table 4.1.	Petrographic description of Kawagarh Formation at Khawri Khwar section, Nizampur Area.	32-33
Table 4.2.	Showing Stratigraphic log of the Kawagarh Formation (Khawri Khwar Section).	34

Table 5.1.Showing the diagenetic details of the Kawagarh Formation.44