Transformer less Voltage Stabilizer

By

Muhammad Ali Khalid 01-133142-066 Hammad Haider Malik 01-133142-040 Imran Imtiaz 01-133142-053

Supervised by

Engineer Mudassir Wahab

Session 2014-18

A Report is submitted to the Department of Electrical Engineering, Bahria University, Islamabad. In partial fulfillment of requirement for the degree of BS(EE).

Certificate

We accept the work contained in this report as a confirmation to the required standard for the partial fulfillment of the degree of BS(EE).

Head of Department

Supervisor

Internal Examiner

External Examiner

Dedication

We dedicate our dissertation work to our family and many friends. A special gratitude to Mudasir Wahab whose words of encouragement have supported us throughout the process.

May "ALLAH" dependably showers His approval upon them and favours them with the best of their wellbeing and long life.

(Ameen)

Acknowledgements

We wish to thank our faculty members who were more than generous with their expertise and precious time. A special thanks to Mudasir Wahab, our supervisor for his countless hours of reflecting, reading, encouraging, and most of all patience throughout the entire process.

Abstract

In this project, a transformerless voltage stabilizer has been proposed to maintain continuous voltage during a wide range of voltage stability. The proposed AC voltage stabilizer for the practical IGBT switches has been investigated for both the manager and the automatic control circuit. A part of the output voltage is taken as a control circuit input voltage and produces error signal if there is a change in output voltage. Revised fault signal is used to make PWM signals for switching devices according to the output voltage stability. The PWM has controlled the current / off time of proposed switching devices (IGGT) of suggested stability. As a result, the stabilizer supply constant voltage in load during any change in the supply voltage. The simulation waveforms and calculations of the total Harmonic distortion (THD) values are compared with previously studied AC buck boost stabilizer. Output voltage, output current and input current and THD values have been improved in the case of proposed AC voltage stabilizer.

Table of Contents

Certificatei
Dedicationii
Acknowledgementsiii
Abstractiv
Chapter 11
1. Introduction1
Chapter 2
2. Literature Review
2.1 Review the relevant research
2.2 Overview of the most scientific papers works on AC-AC voltage stabilizer5
2.2.1 AC-AC Voltage Stabilizer Review
2.2.2 AC-AC BUCK-BOOST VOLTAGE Storage Review(Manuallycontrolled)10
Chapter 3
3. Requirement Specification
3.1 The microcontroller13
3.2 The crystal oscillator
3.3 The IR 211015
3.4 The PWM IC15
Chapter 4 16
4. System Design
4.1 system implementation17
Chapter 5
5. System Implementation21
5.1 The Arduino board
5.2 AC to DC conversion Circuitry
5.3 PWM Generation Circuit
5.4 The driver circuit

5.5 Wireless Transmitter and receiver	
5.6 LM2596 buck converter circuit	
5.7 The programming	
Chapter 6	35
6. System Testing and Evaluation	
6.1 Full Wave Rectifier	
6.2 Buck-Boost Converter	
6.3 Half Bridge Inverter	
6.4 Transformer Less Voltage Stabilizer Circuit	
Chapter 7	
7. Conclusion	
References	41
Appendices	43

List of Figures

Figure 2.1	AC-AC Buck converter	6
Figure 2.2	AC-AC Buck converter (with ideal switches)	6
Figure 2.3	AC-AC Buck converter (with IGBT switches)	7
Figure 2.4	Input and Output voltage waveforms	8
Figure 2.5	Generated PWM signals	9
Figure 2.6	Input and Output voltage waveforms	9
Figure 2.7	AC-AC Buck-Boost converter (with IGBT switches)	11
Figure 2.8	Input and Output voltage waveforms	11
Figure 3.1	Arduino Board	13
Figure 3.2	Micro-controller	14
Figure 3.3	Crystal Oscillator	15
Figure 3.4	PWM IC	15
Figure 4.1	Automatic Voltage Stabilize	18
Figure 5.1	Design of Arduino Board	22
Figure 5.2	AC - DC conversion circuit	24
Figure 5.3	PWM Generation circuit	25
Figure 5.4	PWM Diagram	25
Figure 5.5	DC – AC inverter circuit	27
Figure 5.6	Basic Diagram of Full Bridge Topology	28
Figure 5.7	Complete Diagram of Full Bridge Topology	29
Figure 5.8	Complete Schematic Diagram of Full Bridge Topology	30
Figure 5.9	The driver Circuit	31
Figure 5.10	LM2596 Buck converter circuit	33
Figure 6.1	Full Bridge Rectifier circuit	36
Figure 6.2	Variable Voltage Buck boost converter circuit	37
Figure 6.3	Half Bridge Inverter circuit	37
Figure 6.4	Complete Circuit Diagram of TransformerLess Voltage Stabilizer	38