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a b s t r a c t

Precise and fast shape matching and retrieval from very large datasets is a challenging task because of
the existence of many distortions such as noise, occlusion and affine distortions. In this paper, we aim
to propose a time-saving and effective shape matching and retrieval framework, that employs pruning
which will enable online shape retrieval from extremely large datasets. First, using a hierarchical tree-
based structure supporting parallel processing and efficient feature descriptors, irrelevant shapes are
pruned and a subset of shapes relevant to the query is selected, then using more sophisticated feature
descriptors, accurate retrieval is performed. Contour representation of an object is considered as most
significant visual shape similarity measure by the humans. Using boundary information, we generate two
simplified and efficient feature descriptors for fast pruning, and a sophisticated feature descriptor for
effective and accurate retrieval. Tests performed on standard datasets unveil that the proposed technique
is computationally more efficient than the state-of-the-art techniques while maintaining comparable
matching and retrieval performance. Its performance is scalable for huge datasets and is robust against
affine transformations, articulations and occlusion.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In the new age of smart cameras and other digital image cap-
turing devices, the amount of digital images captured nowadays
have significantly increased. This accretion has raised an urgent
need for general purpose tools for effective and efficient storage as
well as retrieval of digital images. Consequently, many researchers
have focused on developing sophisticated algorithms for enabling
content-based image search. In image shape features are criti-
cally important for object modeling and its significance cannot be
denied. Various shape matching techniques use these features ef-
fectively for content-based similarity measure. Shape matching
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considers perceptually critical representation of shape and the
amount of distance measures that are uneffected by many affine
distortionswhich includenoise, articulation, rotation, jag, scale etc.
Our main goal in this context, is to propose fast and precise shape
matching framework which is resistant to affine rotation, scaling,
skew, occlusion and other distortions and give effective online re-
trieval in the presence of gigantic datasets.

The current state of art for shape matching and recognition
is more focused towards the preciseness of shape matching and
retrieval systems. Mature shape representation and matching
approaches, like [31,2,19,6,28,23,32] etc., are available and can
produce outstanding retrieval accuracies in a range of exist-
ing articulations like affine deformations, occlusion, noise and
articulation. In order to achieve high retrieval accuracies while be-
ing in the presence of such deformations, these techniques use
complex shape descriptors, complicated distance measures and
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computationally costly similarity techniques. Inevitably, they are
time consuming and are computationally expensive. For online re-
trieval of images timely response is critically as important as ac-
curacy. This paper proposes extraordinarily fast shape matching
techniques and parallel processing based indexing structure that
uses efficient scalable hybrid approach to quickly trim away shapes
which are different from the query shape and then apply time con-
suming and accurate techniques only on reduced dataset to get
precise image extraction results thus meeting the online require-
ments.

The paper henceforth is organized in the following manner:
Section 2 contains review of background material relevant to
shape matching. Section 3 presents an overview of the proposed
hybrid shape matching framework. In Section 4, we present
extremely efficient Fourier descriptor based shape matching to
be used for pruning and hybrid shape matching. Sections 5 and
6 present sophisticated IDSC-based shape matching and efficient
but approximation of IDSC-based shape matching respectively. A
hybrid shape matching approach for efficient and accurate shape
matching is presented in Section 7. In Section 8, experiments are
reported to demonstrate the superiority of our proposed approach
in contrast with the existing techniques. In the end a discussion
and proposals for future work are provided.

2. Related work

An important candidate for content-based image retrieval and
recognition is shape descriptors and relative similarity measure.
Previously the work that has been done, has attempted to
represent these shapes through integral invariants, shape context,
curvature, shape signatures, moments etc. In general, we can
classify shape portrayal and matching techniques into further
two sets: (1) contour-based and (2) region-based approaches.
For generating shape representation descriptors contour based
approaches employ only boundary information while ignoring all
the shape pixels while region based approaches consider all shape
pixels.

Majority of contour-based shape features model shape by gen-
erating a rather global representation of the contour. Prominent
global shape representation approaches include shape signature
[17], Fourier coefficients [27,26], differential invariants [12,13],
integral invariants [35], shape context (SC) [38,9,8] and shape con-
text including inner distances (IDSC) [31]. Belongie et al. [9] pro-
posed SC descriptor, this descriptor uses log-polar coordinates
and generates a histogram of contour points using this coordi-
nate system. The sample contour points are selected from contour
that are equidistant from one another. Belongie et al. [9] use chi-
square distance to compute the distance between SC descriptors
whereas Mori et al. [38] employ L2-norm. Ling et al. [31] devel-
oped the Shape Context (SC) descriptor by employing inner dis-
tance in place of Euclidean distance. Inner distance is insensitive to
significant articulations and variety of complexities in shape, thus
resulted in improving the SC. Chi-square distance is used for com-
puting the distance between IDSC descriptors and the final corre-
lation between the IDSC descriptors of two shapes is determined
using dynamic-programming to accommodate the said tempo-
rary relationship between the IDSC descriptors. Overall the sys-
tem yields quality retrieval accuracies in contrast with SC [38] and
most other competitors but at high computational cost. Xiao et al.
[52,53] applied graph-spectral method that transforms the node
correspondent problem into point set alignment by applying
Isomap. Extracted shape matching is achieved by finding the cor-
respondence of difference points on the contour. The issue of co-
spectral nature of the tree structure representation of shapes has
been further elaborated in [53].

Much simpler process for shapematching is used global approx-
imation that may require the parameter distance like Euclidean
distance [25], Hausdorff distance [15], chi-square distance [31] or a
raw point-space distance like Dynamic TimeWarping (DTW) [21],
and correspondence-based shape matching [38,9,8,31]. Online
shapematching in high-dimensional point space is not feasible due
to high computational complexity. Some approaches generate lo-
calized representations of shapes by dividing contours in different
pieces. Piecewise approaches are differentiated based on the cri-
teria used to segment contour into pieces and the feature space
employed to model contour segments. Prominent piecewise ap-
proaches consist of smooth curve decomposition [10], polygon de-
composition [4], and curvature decomposition [18]. [39] proposed
a SVM based shape matching where the feature space representa-
tion of shapes are generated using gradients of decision functions
instead of using edges. These approaches are useful in handling
the problem of partially occluded shapes by performing localized
shape matching. However, this advantage comes at the cost of
complex and inefficient matching. Another problem with piece-
wise approach is their inability to model global representation of
shapes which is critical for accurate shape classification and dis-
crimination.

To overcome the problems associated with exclusive piecewise
or global methods, hierarchical methods have been proposed.
Hierarchical method captures boundary information at multiple
resolutions that range fromvery coarse (for the globalmodeling) to
very fine levels (for the local modeling) [20,19,36]. Alajlan et al. [2]
propose a full multi-scale representation of triangle areas, aiming
to capture the local and the global shape information, for the
sake of shape matching. Daliri et al. [16] define a rather symbolic
descriptor based on Shape Contexts. For handling the existence of
noise such as occlusions and articulations, they utilize the known
edit distance for the final matching of the string based descriptor.

Another considerably critical affine distortion is rotation, it
negatively affects shape matching accuracies and is difficult to
handle [25,30]. For achieving rotational invariant shape matching,
a variety of approaches have been proposed. Some of these
approaches [14,40] employ rotational invariant features such as
curvature and centroid distances based features, ratio of perimeter
to the area, convexity, circularity and so on. These features give
a very coarse representation of shape thus compromising the
accuracy. There exists a variety of approaches that use 1D time
series as shape representation [1,48,11].

Rotation invariance is achieved by some of these approaches
[11] by the selection of considerably fewer starting points (align-
ment according to the major axis) in order to gain 1D time series
depiction of the 2D shape. However, such alignments are consid-
erably erratic especially when there is a lack of well established
major-axis and slight variation in shape can have prominent ef-
fect on rotation alignment. Likewise, in order to define the true
alignment of shape some researchers proposed to use brute-force
search on all possible rotation arrangements available. [25,1,48].
For achieving all possible rotation alignments, one contour has to
be shifted n times (n ≫ 100) where n is the number of contour
points. This approach will result in accurate rotation invariant sys-
tem but will compromise the efficiency of the mentioned content-
based image search and retrieval systems.

Previous research such as [23,32,31,2,19,6,28,50,33,49] has fo-
cused mainly on accuracy of shape matching techniques while
giving less attention to the efficiency problem. These approaches
would not at all be feasible to be utilized in real-life scenarios spe-
cially when having such large shape datasets. The problem of scal-
ing of shape search to comparatively large databases still exists
with most of existing shape matching methods. Recent research
work like [38,25,34], discusses the scalability issue of generally
large datasets. Mori et al. [38] propose two pruning techniques



S. Khalid et al. / J. Parallel Distrib. Comput. ( ) – 3

Fig. 1. Overview of our proposed hybrid shape matching framework.

in order to address the efficient problem of shape matching from
these large shape datasets. The first pruning approach utilizes vec-
tor quantization on the SC descriptor and to replace each shape
context with its corresponding cluster ID. In second pruning ap-
proach, a subset of SC descriptorswas selected randomly. Themain
flaw of this particular approach is that it does not guarantee uni-
formity such as whether SC descriptors are generated roughly at
about similar location on shapes which belong to many different
classes that results in inaccuratematching results. Keogh et al. [25]
tried scaling their shapematching approach to the large datasets by
proposing a wedge-based technique. This approach works on high
dimensional time series model of shape contour and by applying
brute force approach for the named rotational invariance. All these
factors result in relatively higher computational complexity. Lowe
et al. [34] propose a k−d tree based indexing structure particularly
for efficient shapematching by using the ‘‘Best-Bin-First’’ based al-
gorithm. Tan et al. [47] and Grauman et al. [24] suggested R-tree
and Nested R-trees approach for the indexing feature vector de-
pendent shape representation. Inverted files based indexing is also
presented for indexing of a high dimensional sparse vector based
shape representation [42,45].

3. Overview of proposed shape matching framework

Accurate and efficient shape matching and extraction from
large datasets, in the existence of distortions like noise, occlusion
and affine distortions, is a challenging task. Fig. 1 presents an
overview of our proposed hybrid shape matching framework to

cater for this challenge. The proposed approach is composed
of two main modules: (1) efficient but approximate coarse
shape matching to quickly prune candidate subset of shapes
from the dataset (2) accurate but time consuming fine shape
matching using only pruned subset of candidate shapes w.r.t.
query. The proposed approach employs coarse shape descriptors
to support approximate but efficient shape matching and fine
shape descriptors to support accurate but time-consuming shape
matching. The coarse descriptors employed in proposed approach
include Fourier Descriptors (FD) and approximate Inner Distance
based Shape Context descriptors (IDSC). Although multiple fine
descriptors may be used, the one employed in the proposed
approach is actual Inner Distance based Shape Context (IDSC).

Given a query shape, we generate these descriptors for the
query and use it for coarse and fine shape matching. The coarse
shape matching and pruning module comprises of three major
steps employing coarse shape descriptors. In step 1, we perform
k-NN search separately using FD descriptor and approximate
IDSC descriptor. Use of multiple coarse descriptors with different
modeling strategies enables modeling the shape from different
perspective resulting in better results of hybrid coarse shape
matching thus resulting in reduction of false negatives. Extremely
efficient coarse shape matching is enabled by employing proposed
indexing and distributed/parallel beam search based retrieval
approach. The k-NN results obtained separately from FD and IDSC
based shape matching are combined in the second step to obtain
small subset of candidate shapes that are similar to query shape.
In the third step, fine shape descriptors corresponding to the
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candidate shape subset are extracted to be used in the nextmodule
of fine shape matching on a very small subset of candidate shapes
w.r.t. query shape. The module of fine level shape matching is
further composed of three steps. In step 1,we compute the distance
of query shapewith the shapes in pruneddataset using FD and IDSC
descriptors separately. These distances are then combined using
the proposed hybrid approach in step 2. In step 3, the required
number of nearest neighbors w.r.t. query is then identified by
sorting the hybrid distance and selecting the required number of
nearest shapes. The proposed framework is expected to increase
the overall accuracy of the selected fine shape matching technique
and also significantly improving its efficiency.

4. Shape matching based on Fourier descriptors using hierar-
chical indexing structure

In this section, we present an exceptionally efficient technique
for shape matching. This approach uses Fourier descriptors as
shape features. The Fourier descriptor based shape matching is
used for two important reasons (i) The shape matching using low
dimensional Fourier descriptor is extremely efficient and it can be
integrated in hierarchical tree based indexing and retrieval scheme
for quickly removing distant shapes and also identifying a candi-
date list of approximately similar shapes w.r.t. query. Accurate but
inefficient shape matching can than be applied using the pruned
set of candidate shapes. (ii) Fourier descriptors can be fused in a
hybrid framework (proposed later) with complex shape matching
approach to enhance the resultant classification/retrieval accuracy.

4.1. Fourier descriptors based shape matching

Fourier descriptors based shape matching (FDSM) exploits the
boundary information by considering it as a time series thus
providing a global contour based shape representation. Object
contour C(O) of shape is first extracted using Moore–Neighbor
tracing algorithm [22] and is represented as:

C(O) = {(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn)} (1)

where n is the number of contour points. 1D time series represen-
tation of shape from 2-D contour is obtained by the calculation of
the distance of each point from the mean point(centroid) as:

CDt = {


((xt − xc)2 + (yt − yc)2)} t = 1, 2, 3, 4, . . . , n (2)

where CD is centroid distance based 1-D time representation of
shape and xc is the average of all the contour points. To deal with
scale invariance, CD is thus normalized as:

C̈Dt =
CDt − µ

σ
t = 1, 2, 3, 4, . . . , n (3)

where µ and σ are the mean and standard deviation of CD respec-
tively. Depiction of extracting 1-D time series representation from
shape is presented in Fig. 2.

Discrete Fourier Transformation (DFT) is then applied to pro-
duce compress feature space illustration of high-dimensional C̈D
based time series representation. The complex DFT coefficients of
C̈D, referred to as CD, are computed as:

CDf =
1

√
n

n
i=1

C̈Di exp(−j2π fi/n) f = 1, 2, 3, . . . , n (4)

where j =
√

−1 and CDf equal to complex numbers while rul-
ing out CD0 which is real and represents the mean value of C̈D.
We ignore CD0 as C̈D is z-normalized and its mean will always be
zero and hence useless. To ignore high frequency noise related in-
formation while retaining low frequency shape orientation infor-
mation, we truncate the DFT sequence is trimmed after m terms,

f = 1, . . . ,m−1. Resultant feature vector includes 2(m−1) terms
(along with real and imaginary parts). Moreover, the DFT coeffi-
cients FDFT dependent feature vector representation of the given
shape are attained as: ai and ai are the real and imaginary parts
of CD. The shapes may also be represented in the given coefficient
feature space by a 2(m− 1) dimensional vector of DFT coefficients
FDFT , where

FDFT = [a1,a1, . . . ., am−1,am−1] (5)

where ai and ai are the real and imaginary parts of CD. The above
mentioned feature space representation may be properly main-
tained for shape matching of two different contours that are said
to be rotationally aligned. However, this case is very rare. Our rota-
tional invariance approach is inspired from [25] with a difference
that instead of rotating two shapes in accordance with all possible
arrangements of two shapes that are computationally very extrav-
agant, we propose to rotate the two shapes according to some se-
lected points known as critical points on two contours and search
to look for the calibration which gives the minimum stated dis-
tance between feature space representation of the stated two con-
tours. These critical points are identified through determining local
maxima in 1D CD-space representation of shape. Fig. 3 depicts the
identification of critical points on the contour.

Let G = {g1, g2, g3, . . . , gq} be a CD-space representation of
shape, given a set of ncG critical points C = {c1, c2, . . . , cncG} is
identified using G. Rotational invariance is achieved by expansion
of G into a matrix G of ncG a form of time series as:

G =


gc1 , . . . , gq−1, gq, g1, . . . , gc1−1
gc2 , . . . , gq−1, gq, g1, . . . , gc2−1

...
gcncG , . . . , gq−1, gq, g1, . . . , gcncG−1

 . (6)

Each row inmatrixG corresponds to the time series representation
of contour in CD-space that is aligned in consistent with one of
the stated critical points. We pad our described matrix G with the
reversal of particularly all of the time series, to counter any existing
mirrored images, as:

G =



gc1 , . . . , gq−1, gq, g1, . . . , gc1−1
gc2 , . . . , gq−1, gq, g1, . . . , gc2−1

...
gcncG , . . . , gq−1, gq, g1, . . . , gcncG−1

gc1−1, . . . , g1, gq, gq−1, . . . , gc1
gc2−1, . . . , g1, gq, gq−1, . . . , gc2

...
gcncG−1, . . . , g1, gq, gq−1, . . . , gcncG


. (7)

Let H be a feature matrix representation of yet another shape
having ncH critical points. The rotational invariant distance
between shapes G and H is described as:

DistFD(G,H) = min
1≤i≤ncG

min
1≤j≤ncH

(∥DFT (Gcj),DFT (Hci)∥) (8)

where DFT (·) is a DFT based dimension reducing function and
∥·, ·∥ is the given Euclidean distance. Time complexity analysis of
executing a query on a shape database by using FDSM algorithm is
O(2∗ncG∗ncH∗m∗N)where ncG and ncH are the number of existing
critical points, m is the length of feature vector representation of
shape and N is the total number of shapes in dataset. The total
number of critical points barely surpass 15 even for complicated
shapes and the value of m is according to the order of 8 to 32. As a
result, the overall complexity of FDSM algorithm reduces to O(N).
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Fig. 2. Extracting 1-D time-series representation of shapes. (a) Original image with 2D shape. (b) C space representation with ‘o’ marking the initial point. (c) Projection of
contour from 2D C-space to 1D CD-space. (d) CD-space representation of shape.

Fig. 3. Estimating critical points through the use of local-maxima heuristic. ‘△ ’ marks highlight the extracted critical points in (a) CD-space (b) contour-space representation.

4.2. Hierarchical tree-based indexing

Although, FDSM is an extremely efficient approach for shape
matching, we further improve its scalability to larger datasets by
efficiently trimming out the distant shapes and identifying lists
of similar shapes which may include k-nearest neighbors of the
query. This process, while speeding up the FDSM, enables very
complex and slow shape matching approaches to be applied on
the extracted subset of shapes, thus making them feasible to
be applied in case of a very large dataset available. We present
an approach to create index of shape dataset. The suggested
technique for creating index of shape-database is a tree-based
indexing approach that performs hierarchical quantization and
determines certain number of groupings from the subset of shapes
at each level. The recursive clustering of shapes continues until
a stopping criterion is reached. Each group of shapes is then
represented through a node present in the tree which is basically
a generalized representation of shapes within the group. The
proposed hierarchical tree-based indexing algorithm is comprised
of the following steps:

(1) Firstly, low dimensional matrix of DFT coefficient based rep-
resentation of shapes is generated by applying dimensional-
ity reducing function on each time series in the matrix-based
representation (G) of shapes in datasetDB as shown in Eq. (5).

(2) Then Learning Vector Quantization (LVQ) network with 3∗b∗

number of obtained output neurons where b∗ is the number
of groupings that wewish to define is initialized. The number
of given input neurons is equivalent to the size of feature
vector representation of a single alignment of contour.

(3) DFT-based feature space representation of the original
arrangement of shapes is extracted, mean (µ) and covariance
(Σ) are also estimated. Weight vectors Wi (where 1 ≤ i ≤

#output ) are initialized from the PDF N(µ, Σ).
(4) Winning node is identified k (indexed by c) as:

DistFD(Wc,G) ≤ DistFD(Wk,G) ∀k. (9)

(5) LVQnetwork is updated by tuning theweight vectorWc of the
winning output neurons c as:

Wc(t + 1) = Wc(t) + α(t)DistFD(Wc,G) (10)

where t is the index of training cycle and α(t) is the rate of
learning of LVQ which is updated after each iteration as:

α(t) = 1 − e
2(t−t́)

t́ (11)

where t́ is the maximum number of training iterations.
(6) Loop through steps 4 and 5 for t́ iterations.
(7) Output neurons with zero membership are filtered.
(8) The nearest pair of output neurons is merged (indexed by

(a, b)) as

Wab =
mWa + nWb

m + n
(12)

where

(a, b) = argmin
(i,j)

[(Wi − Wj)
T (Wi − Wj)]

1
2

∀ i, j ∧ i ≠ j (13)

and m, n are the total number of samples corresponding to
output neuron stated as a and b respectively.

(9) Step 8 is repeated until there are b∗ number of output
neurons.

(10) b∗ nodes are generated and are represented by Γ , in the
hierarchical tree and set:

Γi · W = Wi

Γi · max = max
∀G∈Γi

(DistFD(Γi · W ,G)) for i = 1, . . . , k

Γi · mean =


∀G∈Γi

(DistFD(Γi · W ,G)/|Γi|)

Γi · std =


∀G∈Γi

(DistFD(Γi · W ,G) − Γi · mean)/|Γi|

(14)

where |Γi| is the membership count of node Γi, Γi · W is
the generalized representation of group of shapes indexed by
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Fig. 4. Depiction of proposed pruning mechanism using ring-based orientation of leaf nodes.

Γi, Γi · max and Γi · std are the max and standard deviation
of the distance of feature vector representation of member
shapes from Γi · W respectively. The node also stores the IDs
of shapes that are identified as members of a given node. To
further enhance pruning power, member shapes of a given
node are additionally placed into i = 1, . . . , p bins (depicted
as rings in Fig. 4). There bins are developed based on the
distance of feature vector representation of shapes from node
center, represented byΓi ·W . Generated nodes are then added
as the descendant of the corresponding parent node in the
index tree.

(11) Subset of nodes, are then identified referred to as 0, whose
count of membership is more than a cluster membership
threshold κ as:0 = {Γi ∈ 0||Γi| > κ} ∀i. (15)

(12) The stability of indexing process is then validated.
(13) The indexing process is terminated if it is stable (0 = {}).

Otherwise, select subset of shapes indexed by a node from0
and the process is repeated to generate b* groupings from the
selected subset of shapes.

4.3. Retrieval using generated index

In this section, we propose our retrieval algorithm, known as
DistributedBeamSearch (DBS),which employs generated indexing
structure to look for k-NN of the query shape while guaranteeing
no false dismissals. Instead of selecting a single child node at a
given depth level, DBS selects and evaluates multiple child nodes
which enables our approach to explore all possible nodes that may

be indexing one of the related shapes desired to be present in
the k-NN results w.r.t. query shapes. Retrieval of k-NN using our
proposed DBS approach is comprised of steps given below:

(1) Feature space representation of the query dependent shape is
generated (Q) as specified in Eq. (7).

(2) The list of candidate nodes are initialized 0 with nodes
existing at depth 0 of the tree.

(3) The nodes are then arranged in 0 in an increasing order with
respect to the distance of their comprehended feature space
representation from Q.

(4) Extract first subset of related nodes w.r.t. query as:

0ı =


{Γ1, Γ2, . . . , Γp} ∈ 0|

p
i=1

Γi.count ≥ k ∧

p−1
i=1

Γi.count < k


(16)

where p is known to be an index of farthest node from Q in
0ı and k is the number of closest neighbors that we actually
want to retrieve w.r.t. query shape.

(5) Select another subset of nodes from 0 as:

0ȷ = {Γi ∈ 0 ∥ (DistFD(Γi · W ,Q) − Γi · max)

≤ (DistFD(Γp · W ,Q) + Γp · max)} ∀i. (17)

This subset ensures that we do not miss on any shape that
has a chance to be part of k-NN results in accordance with the
query using sequential shape matching.

(6) Set 0 = 0ı ∪ 0ȷ.
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Fig. 5. Depiction of DBS to perform k-NN query using tree-based indexing structure.

(7) Replace non-leaf nodes in 0 with its corresponding child
nodes. Iterate through steps 3 to 7 till there are no non-leaf
nodes in 0.

(8) Select all possible shapes that are indexed by those nodes in
0 fulfilling the following criteria:

DistFD(Γi · W ,Q)

≤ (DistFD(Γp · W ,Q) + Γp · max) ∀i ∈ 0. (18)

(9) Select only subset of shapes indexed by nodes in 0 not fulfill-
ing the criteria as specified in Eq. (18). Those shapes are se-
lected which belong to the exterior ringlets around the nodes
whose distance from Q is smaller than (DistFD(Γp · W ,Q) +

Γp · max). Depiction of retrieval process using presented in-
dexing structure is shown in Fig. 4. The query shape in a given
state space is represented as ‘+’ marker in Fig. 4. Rings within
nodes represent bin and radius of nodes represents the max-
imum distance of member shapes from generalized feature
space representation of the corresponding node. The shapes
shown in shaded region of state space is chosen for sequen-
tially matching with query shape.

(10) Perform k-NN query using subset of shapes selected in steps
(8) and (9), referred to as DBpruned, as:

k − NN(Q,DBpruned, k) = {C ∈ DBpruned|∀R ∈ C,

S ∈ DBpruned − C,DistFD(R,Q)

≤ DistFD(S,Q) ∧ |C | = k} (19)

where S and R are feature space representation of shapes in
DBpruned.

Process of retrieval using proposed indexing mechanism is high-
lighted in Fig. 5. Themembership count of each node is depicted by
the radius of each node. Parsing the tree through a single branch
for shape retrieval and selecting only one node at each level will
result in ignoring related shapes that are indexed by some other
nodes at those levels. This might have resulted in false dismissals

in the search results. DBS solves this problem by performingmulti-
branch parsing and selecting all nodes with the finest of chances to
contain the shapes of the desired result.

5. IDSC based shape matching

This section presents a shape matching approach on the basis
of Shape Context by the use of Inner Distance (IDSC) as presented
in [31]. IDSC descriptors are considered to be state-of-the-art shape
descriptors that generate sophisticated representation of shapes.
However, matching using IDSC descriptor, as presented in [31], is
inefficient. We have selected IDSC descriptors to be used in hybrid
shape matching framework with Fourier descriptors. Fourier
descriptor based shape matching is employed to quickly retrieve
certain number of nearest neighbors. Inefficient but accurate shape
matching using IDSC descriptors is then employed considering
only selected subset of candidate shapes. The IDSC dependent
approach is in short described here for the completeness of text
and its relationshipwith Approximate IDSC (IDSC) based approach
presented in next section. Original shape context (SC) descriptor
as given in [9] models that complete shape according to a specific
point using oriented direction and the distance bins. Euclidean
distance is used to determine the distance between the two points.
Ling et al. [31] improved the shape descriptor by producing the
bins through the use of inner distance and giving definition to
the orientation as the tangential direction at the initial point of
shortest path. It is provided that a time series representation of
shape contour, as stated in Eq. (1), a set of fixed number of equi-
distant sample points ns, are extracted on the contour. Suppose
SP = {sp1, sp2, . . . , spns} is the set of sample points on the contour,
interior distance based shape context (IDSCi) at the sample point
spi is given as:

IDSCi(k) = #{spj : spj − spi ∈ bin(k) ∀j ∧ i ≠ j} (20)

where bins are evenly distributed in the log-polar space.
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Consider Q and R to be the query shapes and shapes from
dataset to be sets of available sample contour points q1, q2, . . . , qns
and r1, r2, . . . , rns respectively. Let IDSCQ and IDSCR be the sets
of IDSC descriptors that are produced on sample contour points
of the shape Q and R, as stated in Eq. (1). The described distance
matrix in between the IDSC descriptors which uses χ2 statistics
and computation is as follows:

DMij =
1
2


1≤k≤K

(IDSCQ
i (k) − IDSCR

j (k))2

IDSCQ
i (k) + IDSCR

j (k)
(21)

where IDSCQ
i and IDSCR

j are the IDSC descriptor of qi and rj respec-
tively and k is the stated number of total histogram bins used for
creating IDSC descriptors. Then dynamic programming function is
used to calculate distance between shapes to search the correlation
regarding sets of points on contour by utilizing the sequential in-
formation of the known contour. Dynamic Programming [7,41] has
been commonly used for finding interrelation between the tempo-
rary data.

Previously mentioned feature space representation andmatch-
ing presumes that the two contours are aligned in a rotational
manner which is scarce. The original IDSC-based shape matching
approach aims to conquer rotational invariance by random selec-
tion of certain number of initial starting points for contour arrange-
ment. Instead, we then align the two given shapes by employing
critical points based arrangement techniques as specified in Sec-
tion 4.1. Here, we use earliest possible removal, as discussed
in [25], for reducing the computational complexity in order to
achieve the rotational invariance in shape matching. The basic ini-
tiative leading to early removal is that we eliminate the compu-
tation of the said distance between two shapes for an available
mentioned arrangement if it gets greater than the distance already
computed for another arrangement of the shape.

6. IDSC based approximate shape matching

Now in this section, we propound for generation of an ap-
proximate representation of IDSC descriptors (IDSC) for rough but
yet efficient enough shape matching. The main incentive behind
generation of second coarse representation of shapes along with
Fourier coefficients is to use descriptors that generate approximate
modeling of shapes from different perspective. The pruning results
of these two coarse shape matching approaches will be combined
to have a refined pruned subset of shapes. Fine, accurate and more
tedious complex shape matching approaches can then be used on
the shapes, which are known to be as k-NN according to query
shapes using coarse matching.

We now find a set of critical points along the contour through
the combination of the critical points which were obtained by
the use of polygon decomposition approach from the already
mentioned group of fixed number of sample points ns on the shape
contour [51] and the refinement of the critical point detection
approach as outlined in Section 4.1. Now we aim to find both local
minima and maxima along the centroid distance area which is to
be included in the given set of critical points. IDSC-based shape
descriptors are created when not just on the critical points but
also all given the sample points along the contour are taken into
account. Let us consider Q and R to be the two shapes which
are being represented by a set of critical points {q1, q2, . . . , qncQ }

and {r1, r2, . . . , rncR} where ncQ and ncR are the number of critical
points as known for the shapes Q and R respectively. IDSC
descriptors are generated on identification of the critical points of
the shape Q and R, using Eq. (20) and are known as IDSC .

Let IDSC
Q

and IDSC
R
be a described set of IDSC descriptors

which are generated on the given critical contour points of the

given query shape Q and the given sample shape R from the given
dataset. For computation of distance between two IDSC descrip-
tors, we tend to use Euclidean distance as it is quite efficient. Since
aim is not generating IDSC descriptors on all the points of the con-
tour, so every descriptor on the query shape will give an approx-
imately fitting match on similarity but distorted shapes due to
noise, affine transformation and occlusion. In order to solve this
problem and to contribute in the distance measure only a subset
of IDSC

Q
descriptors is selected to search for a fitting match with

the IDSC
R
descriptors. That is to say, the distance between IDSC

descriptors of query shape Q and sample shape R is calculated as
stated:

(1) Distance of each IDSC shape descriptor Q is calculated with its
closest IDSC descriptor of shape R as:

DQR(i) = min
∀j

∥IDSC
Q
i , IDSC

R
j ∥ ∀i (22)

where DQR(i) is distance of ith IDSC descriptor on shape Q
according to IDSC descriptors of shape R.

(2) Sort DQR in the ascending order.
(3) The computation of distance between shape Q and R is stated

as:

DistIDSC =

p
i=1

DQR (23)

where DQR is the sorted distance set while p is the number of
matches that are closest to descriptors of Q with R. Value of p
is calculated in relation ncQ as:

p = ⌈0.4 ∗ (1 − (ncQ − minnc)/(maxnc − minnc)) + 0.3⌉ (24)

where minnc and maxnc are the approximate values of min-
imum and maximum number of the total critical points on
shape contours from the given shape dataset.

7. Hybrid shape matching

In this section, we are going to propose hybrid shape matching
approach that integrates the shape matching techniques, as
presented in Sections 4–6. For large datasets, we build a brief
list of candidate shapes which hold some chances for making k
nearest matches as wanted by the client while pruning shapes that
are irrelevant i.e. far from the query shape. For quickly pruning
distant shape we use IDSC and FD based roughly proposed shape
matching using presented tree-based indexing structure. More
complex, slow and precise shape matching approaches, based on
combination of IDSC and FD based shape descriptors are then
applied on a subset of the shape datasetwhose identitywas known
while coarse matching phase was taking place. The suggested
hybrid shape matching algorithm consists of following steps:

(1) FD, IDSC and IDSC based feature space representation of the
given query shape as discussed in Sections 4–6 respectively
are generated.

(2) First candidate list of shapes DBFD from shape dataset DB
is identified using indexed shape matching in FD space
previously mentioned in Section 4. The number of candidate
samples retrieved is given as the value of k in k-NN query as
shown in Eq. (19).

(3) Identify second candidate list of shapes DBIDSC from shape
dataset DB using shape matching in IDSC space as presented
in Section 6.
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Table 1
An overview of the datasets used for experimental purposes.

Dataset Description Total # of shapes # of classes # of shapes per class

MPEG-7 Commonly used shape dataset for evaluation of shape matching
approaches. Standard metric for measuring effectiveness of shape
representation and matching approaches is bulls-eye score.

1,400 70 20

Tari Shape dataset similar to MPEG-7 dataset but has more articulation
changes within each class.

1,000 50 20

Swedish Leaf Shapes of leaves from a leaf classification project at Linkoping
University and the Swedish Museum of Natural History.

1,125 15 75

Silhouette dataset Popular database used for evaluation of shape matching techniques in
the existence of articulation and other possible shape distortions.

99 9 11

Urdu ligature dataset Database containing ligatures from Urdu language. Urdu characters are
joined together to form ligatures which can be further combined to
represent Urdu words. Various samples of different scale and rotational
alignments for each ligature are generated.

141,190 2017 70

Fig. 6. Sample shapes from MPEG-7 dataset which contain one shape per class.

(4) Set:

DBpruned
= DBIDSC

∪ DBFD. (25)

(5) Then the distance of all the shapes that are chosen inDBpruned is
calculated with the query shape being able to use IDSC-based
feature space representation as identified in Section 5.

(6) Consider DIDSC and DFD to be a vector consisting of IDSC-space
and FD-space distances of shapes from pruned datasetDBpruned.
Then a z-score normalization ofDIDSC andDFD is performed and
computation of the hybrid distance of k-NN shapes from query
is as stated:

Dhybrid
=

DIDSC
+ DFD

2
. (26)

(7) The distanceDhybrid to
  
Dhybrid ismatured by using improvedmu-

tual kNN graph based analysis of shape manifold as propound
in [28].

(8) The shapes are thus sorted according to
  
Dhybrid distance which

then correspond to the real k-NN to query shape representa-
tion

k − NN(Q ,DBpruned, k) = {C ∈ DBpruned|∀R ∈ C,

S ∈ DBpruned − C,

  
Dhybrid
R ≤

  
Dhybrid
S ∧|C | = k} (27)

where
  
Dhybrid
R and

  
Dhybrid
S are the transformed hybrid distance of

shapes R and S in DBpruned according to query shape Q .

8. Results obtained from experiments

In this particular section a few of the results that show potency
of the proposed shape matching technique such as compared to
the other state of art approaches, are presented. The comparison is
done w.r.t. two effectiveness measures i.e. efficiency and accuracy
when a very large dataset of shapes is under consideration.

8.1. Experimental datasets

Experiments are conducted on a number of shape datasets in-
cluding MPEG-7 dataset [29], Tari dataset [3], Swedish leaf dataset
[46], silhouette dataset [44] and Urdu ligature dataset. The proper-
ties that can be referred to as characteristics of these datasets are
summarized in Table 1.

8.2. Experiment 1: Performance of proposed framework

This experiment was conducted to analyze the performance
and efficiency of using pruning mechanism with little impact
on accuracy. The experiment was done on MPEG-7 dataset.
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MPEG-7 dataset has been mostly used for evaluation of shape
matching methods using center score. The dataset is selected
because it offers objects varieties with real world distortion such
as articulations, cracks, affine deformations and occlusion. Fig. 6
displays one image per shape class from MPEG-7 dataset. We
generated FD-based shape features of shapes in MPEG-7 dataset.
The selection of m is carried out using empirical evaluation.
Setting values of m between 10 and 20 gives almost consistent
performance with minor variations in retrieval/classification
accuracies. We assumed m = 16 in Eq. (5) based on empirical
evaluations. However, our approach is not considerably sensitive
to the accurate value of m as the major contribution of
shape matching is removal of dissimilar shapes w.r.t. query. FD
descriptors are then indexed through the use of hierarchical tree
based indexing structure to let elimination of unrelated shapes
and speed up the shape matching algorithm in large datasets.
IDSC based shape descriptors are thus generated through the
description available in Section 5. In order to be consistent
with [31,28,6], 100 sample points are selected on the contour
for IDSC descriptors. IDSC based shape descriptors are generated
as previously mentioned in Section 6. Initially FD based shape
matching and IDSC based shape matching are executed to fetch
150-NN results from the shape dataset. A candidate subset of
shapes is produced by combining the two subsets of shapes.
The subset of the candidate has just 209 shapes through MPEG-
7 dataset which is less than 15% of the complete number of
shapes available in MPEG-7 dataset. A hybrid shape matching,
using IDSC and FD based shape matching, is then performed only
on a subset of candidates as mentioned in Section 6. Standard
pivotal score is used for comparison of the performance of the
proposed hybrid approach to the state-of-the-art techniques. All
shapes in the dataset are like a 40-NN query and the total number
of shapes from the same class in the result set is conveyed to the
user. Bulls-eye/pivotal score is the computation of the ratio of the
total number of shapes obtained from the same class relative to
the query and the maximum number of correct retrieval (20 ∗

1400). We have computed the bulls-eye score using four different
settings to highlight the performance of different components
of the proposed framework: (i) Coarse Shape Matching (ii) Fine
Shape Matching without Pruning (iii) Fine Shape Matching with
Pruning (iv) Hybrid Shape Matching without Pruning (v) Hybrid
Shape Matching with Pruning. The efficiency of our proposed
system in above five settings is computed as the time taken
to execute a 40-NN query. Results to highlight the accuracy
and efficiency of the proposed approach in different settings
are presented in Table 2. It can be observed that the proposed
coarse shape matching using indexing is remarkably fast and
helps in quickly pruning disjoint shapes w.r.t. query. It is also
seen that our proposed pruning approach significantly improves
the efficiency whilst having little impact on accuracy. From
Table 2, it can also be noted that combining coarse and fine shape
matching in a hybrid framework and employing graph analysis
significantly enhances the performance of sophisticated shape
matching approach. The efficiency of shape matching techniques
without pruning deteriorates linearly with the increase in the
number of shapes in the dataset. This is not the case when pruning
mechanism is employed as complex shape matching is done only
with a considerable small subset of shapes as demonstrated in
experiment 3.

8.3. Experiment 2: Comparison

This section provides a comparison of the proposed framework
with the competitive techniques. This experiment was conducted
on MPEG-7, Swedish leaf and Silhouette datasets.

Table 2
Performance analysis of proposed approach using different settings of proposed
framework.

Method % accuracy Efficiency (Time Taken)

Coarse shape matching 71.39 0.06 s
Fine shape matching 85.54 8.3 s
Fine shape matching + pruning 85.39 1.7 s
Hybrid shape matching 94.13 9.2 s
Hybrid shape matching + pruning 94.01 2.1 s

8.3.1. MPEG-7 dataset
The experimental setup using MPEG-7 dataset is same as spec-

ified in Experiment 1. Bulls-eye score is used for comparing ac-
curacies of retrieval of variety of approaches with our proposed
framework, on MPEG-7 dataset. The statistics of comparison are
shown in Table 3. Our proposed framework yieldsmaximumbulls-
eyes score among all the current state of art techniques. The
pruning ability of our proposed hybrid approach is highlighted in
Experiment 3.

8.3.2. Tari dataset
Tari dataset [3] is similar to MPEG-7 dataset but contain more

articulation changes and is built to have large intra-class shape
deformation. The experimental setup is same as specified for
MPEG-7 dataset. Table 4 presents the bull-eye score of variety
of approaches. Our proposed hybrid shape matching framework
outputs superior performance as compared to the competitors.

8.3.3. Swedish leaf dataset
The Swedish leaf is a leave dataset. It has 15 Swedish leaf classes

including the shapes of 75 leaves in each class. Fig. 7 displays one
image from each leaf class of the dataset. For our proposed hy-
brid shape matching, we generated FD descriptor using top 16
lower order Fourier coefficients as specified in Eq. (5). Hierarchi-
cal tree based indexing structure is also generated to further speed
up the FD-based shapematching. IDSC based shape descriptors are
generated as described in Section 5. Similar to the experimental
settings in [31], we choose 128 contour sample points for IDSC de-
scriptors. IDSC based shape descriptors are produced as depicted
in Section 6 respectively. Training data 25 leaves are randomly
selected from each class and for testing remaining 50 leaves per
class are used. 50 times the experiment was repeated. In each it-
eration different training shapes are randomly selected and to get
rid of any prejudice associated with favorable shape selections of
the 1-NN classification accuracies are averaged. Table 5 presents
1-NN classification accuracies of various shape matching tech-
niques computed on Swedish leaf dataset. The results yield that our
proposed framework outperforms the competitor shape matching
techniques.

8.3.4. Silhouette dataset
High noise level is considered in this experiment setup. For

base case establishment, two different schemes for comparison
are implemented, critical invariants and differential invariants.We
selected a subset of 24 specific shapes from silhouette dataset
to make the experiment consistent with the one reported using
integral invariant and differential invariant as reported in [35]. The
silhouette dataset provides manually labeled shapes and so in this
experiment effects of noise are simulated. Noise is incorporated
by translating all contour points by a measurable distance dwhich
determines quantity of the induced noise. Suppose if S represents
the original data, a noisy dataset SC is generated by addition of the
termN[0, σ ] to each (x, y) coordinate on the contour in the normal
direction. We set σ = 3.0 to simulate high level of noise in shapes.
Each noisy trajectory in SC is thus selected to be set as an example
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Fig. 7. Sample shapes from Swedish leaf dataset which contain one shape per class.

Table 3
Comparison of proposed hybrid shape matching approach with its competitors who also use MPEG-7 dataset.

Method SC [9] Aligning Curves [43] Skeletal Context [54] Optimized CSS [37] Contour Seg. [5] IDSC [31]

Score (%) 76.51 78.16 79.92 81.12 84.33 85.54
Method Symbolic Rep. [16] Hier. Procrustes [36] Triangle Area [2] IDSC+ Graph

Transduction [6]
IDSC+ Graph
Analysis [28]

Proposed Hybrid
Approach (with pruning)

Score (%) 85.92 86.35 87.23 91.61 93.40 94.01

Table 4
Comparison of proposed hybrid shape matching approach with its competitors who also use Tari dataset.

Method SC [9] IDSC [31] SC + Graph Transduction [6] IDSC + Graph Transduction [6] IDSC + Graph Analysis [28] Proposed Hybrid Approach
(with pruning)

Score(%) 94.17 95.33 97.79 99.35 99.41 99.99

Table 5
Comparison of 1-NN classification results of proposed hybrid shape matching
approach with competitors who use Swedish leaf dataset.

Method % accuracy

Fourier descriptors [31] 89.60
SC + DP [31] 88.12
IDSC [31] 94.13
IDSC + Graph Transduction [6] 95.71
IDSC + Graph analysis [28] 96.83
Proposed hybrid method 97.17

Table 6
Average response time to execute 100-NN query for varying number of samples
using IDSC and proposed hybrid approach.

# samples IDSC [31] Proposed hybrid approach

6,000 34.25 s 2.13 s
9,000 51.42 s 2.37 s

12,000 68.76 s 2.55 s
15,000 86.17 s 2.71 s
18,000 103.13 s 2.83 s

queryQC and search is done on set k nearestmatches in the original
dataset S.

For the proposed approach, pruning distant shape steps are
ignored. Hybrid shape matching, employing IDSC and FD based
shape matching, is thus applied over the whole dataset relative
to the stated query shape. The process of adaptation of local-
area integral invariants [35] is used for implementing the integral-
invariants. Differential invariants implementation is based on
the adaptation of curvature invariants [13,12]. Retrieval of noise
causing shapes from a given subset of silhouette dataset are shown
in Fig. 8. Graphical representation of shape distances is shown for

effective visualization. Lower gray levels show low distances and
vice versa. Best match is theminimum distance for the noisy query
sample is shown by diagonal entries. A block diagonal structure
with low gray levels parallel to the diagonal is preferred. The
proposed shape matching approach gives superior performance
by having lower distances along the diagonal resulting into a
good block diagonal structure, along with integral-invariant based
approach. Differential invariant does not present a block diagonal
structure due to the presence of high distances along the diagonals.
The results presented in Fig. 8 demonstrate the robustness of
proposed shape matching approach to the existence of noise in
shapes in comparison with the competitors.

8.4. Experiment 3: Efficiency experiments

This experiment is conducted to highlight the performance
efficiency of the pruning capability of our proposed hybrid shape
matching framework. MPEG-7 dataset is considered and bulls-eye
metric is used once again for calculating the retrieval efficiency.
Count of selected shapes in the pruned datasets as described in
Eq. (25) is used for performing shape matching using complex and
computationally heavy IDSC based shape matching. The bulls-eye
score for various percentages of given samples in the candidate
subset of shapes shown in Fig. 9. As it is obvious from the
figure, the proposed hybrid approach surpasses performance of
competitors by just using shape matching on 10% of the shape
dataset. The percentage of sample required for effective shape
matching will decrease with the increase in the size of shape
dataset, as demonstrated in the next experiment.

To further validate the scalability of proposed shape matching
framework in the existence of stated large shape datasets, we
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Fig. 8. Shape distances calculated using (a) proposed hybrid approach (b) integral invariant (c) differential invariant. Lighter shades are used to represent high distances
and vice versa.

Fig. 9. Bulls-eye score achieved using different % of samples for sophisticated shape
matching.

combined projectile points dataset1 containing 16,000 samples
with MPEG-7, Tari, Swedish leaf and KIMIA 99 datasets resulting
in 19,000+ samples. To establish the base case, we implemented
IDSC [31] based shape matching techniques which we are
employing as our fine shape matching approach. This allows us
to have a relative comparison with our nearest competitors w.r.t.
accuracy such as IDSC +Graph Transduction [6] and IDSC +Graph
Analysis [28] that apply post processing step on IDSC-based shape
matching [31]. These techniques will require more time to yield
a k-NN query as compared to IDSC . We implemented all these
mentioned algorithms with the help of MATLAB 11 and execution
times were noted on Intel Core i5 3.20 GHz with 2GB RAM. We
obtained each sample from the dataset in a sequential manner
and executed a 100-NN query on the remaining dataset. Average
query time noted for obtaining 100-NN results with the use of
various shapematching approaches are presented in Table 6. It can
be seen from Table 6 that the proposed hybrid shape matching
framework performs well compared to the competitors relative
to the scalability in the existence of the large shape datasets.
The proposed shape matching approach consumes significantly
lesser time as compared to its competitor although it is a
hybrid shape matching mechanism. The significant reduction in
computational complexity is attributed to our proposed pruning
approach based on hierarchical tree-based indexing and retrieval
in our coarse shape matching module as presented in Section 4.
A very small subset of candidate shapes from dataset is identified

1 Available at: http://www.cs.ucr.edu/eamonn/shape/shape.htm.

by performing extremely efficient coarse shape matching. The
performance is significantly enhanced further by employing tree
based indexing approach. Hybrid shape matching employing
accurate but computationally complex shape matching approach
is only employed on a very small subset of shapes. The pruning
performance as highlighted in Fig. 9 shows that the proposed
approach achieves higher accuracy by performing computational
expensive fine shape matching on a very small subset of dataset.
The pruning power enhances with the increase in the database set
thus resulting in almost consistent retrieval time for large to very
large datasets. This scalability of our proposed approach to large
dataset is evaluated in Experiment 5.

8.5. Experiment 4: Scalability to large databases

The aim of this particular experiment is to demonstrate its
scalability in the stated shape matching framework to very large
databases. Fig. 10 shows one picture per ligature class extracted
from the Urdu ligature dataset. The experiment is conducted
on Urdu ligature dataset containing 141,190 samples. For our
proposed hybrid shape matching, we generated FD descriptor
using top 16 lower order Fourier coefficients as specified in Eq. (5).
Hierarchical tree based indexing structure is generated to further
speed up the FD-based shape matching. The generation of IDSC
descriptors is briefly described in Section 5.We selected 100 points
as a sample on the contour to be further used for IDSC descriptors.
IDSC based shape descriptors are thus generated as previously
mentioned in Section 6 respectively. We performed leave one
out cross-validation and 100-NN query using our proposed shape
matching framework. To highlight the pruning power of our
approach using proposed hierarchical indexing structure, we
present the fraction of samples that have to be retrieved from
disk to perform complex shape matching whilst giving same
performance as sequential shape matching. The proportion of
samples retrieved for execution of 100-NN query in the presence
of various number of shapes in database are presented in Fig. 11.
It is obvious that the percentage of samples obtained to be able to
answer a query decreaseswith the increase in size of database thus
resulting in nearly consistent query execution time for varying size
shape database. Hence, our proposed shape matching framework
enables time-consuming complex shapematching techniques that
are applicable in the existence of considerably large number of
samples in datasets.

http://www.cs.ucr.edu/eamonn/shape/shape.htm
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Fig. 10. Sample shapes from Urdu ligature dataset consisting of one shape per ligature class.

Fig. 11. Average percentage of samples retrieved to answer 100-NN query by using
different number of samples from Urdu ligature dataset.

9. Discussion and conclusions

We discussed shape matching in detail in the presence of
articulation, affine deformation, noise and other distortions such
as occlusion, in this paper. A shape matching framework is
proposed that generates many contour based feature of shapes
for shape matching. Compressed Fourier descriptors based shape
representation is generated and incorporated in the framework for
two major merits: (1) Hierarchical tree based indexing structure
results in fairly fast shape matching that can be made use of
accurately for a coarse shape matching and pruning of dissimilar
shapes and (2) Also it can form a combination with complex shape
features like IDSC to build up their shape matching accuracies.
IDSC descriptors are capable to accurately model complex shapes
suffering from the problems of occlusion, articulation and other
affine distortions. We have also presented an IDSC based shape
descriptor which is an approximation of IDSC descriptor for
coarse but efficient shape matching. IDSC models the shape using

different perspective as compared to FD descriptor and helps
in generating an accurate set of candidate list while trying to
minimize false negatives. The major achievement of this paper
is a hybrid shape matching framework which enhances retrieval
and classification accuracies of existing state-of-the-art techniques
while significantly reducing their computational complexity. The
proposed framework can be incorporated with any of High-
ranked shape matching algorithm in order to increase its shape
matching efficiency and also significantly aiming to reduce the
computational cost which makes it scalable to gigantic datasets.
In our future work, The analysis of the proposed approach will be
carried out in cluster/cloud platforms.

Multiple experiments were conducted to able to view the effec-
tiveness of proposed hybrid shape matching framework using dif-
ferent shape datasets. Experiment performed on silhouette dataset
shows that our proposed method gives better retrieval accuracies
than the remaining competitive techniques like differential invari-
ants and integral invariants under perturbation while being in the
coexistence of high noise level. Results have shown that MPEG-7
and Swedish Leaf datasets give best possible retrieval and classi-
fication accuracies using proposed hybrid approach however the
proposed approach applies complex shape matching on a very
considerably small subset of shapes. We, thus have managed to
achieve a bulls-eye score of 94.01% on MPEG-7 datasets which is
so far best scores on well-known MPEG-7 dataset. Moreover, this
accuracy is obtained by applying sophisticated shape matching on
perhaps only 15% of the shapes in MPEG-7 dataset that depicts the
application of proposed approach to gigantic shape datasets.
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