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Abstract: Glaucoma is a group of eye disorders that damage the optic nerve. Considering a single eye condition for the
diagnosis of glaucoma has failed to detect all glaucoma cases accurately. A reliable computer-aided diagnosis system is
proposed based on a novel combination of hybrid structural and textural features. The system improves the decision-making
process after analysing a variety of glaucoma conditions. It consists of two main modules hybrid structural feature-set (HSF) and
hybrid texture feature-set (HTF). HSF module can classify a sample using support vector machine (SVM) from different
structural glaucoma condition and the HTF module analyses the sample founded on various texture and intensity-based
features and again using SVM makes a decision. In the case of any conflict in the results of both modules, a suspected class is
introduced. A novel algorithm to compute the super-pixels has also been proposed to detect the damaged cup. This feature
alone outperformed the current state-of-the-art methods with 94% sensitivity. Cup-to-disc ratio calculation method for cup and
disc segmentation, involving two different channels has been introduced increasing the overall accuracy. The proposed system
has given exceptional results with 100% accuracy for glaucoma referral.

1 Introduction
Glaucoma is a painless neurological disease which is hard to
diagnose especially in the early stages due to a very slow
progression rate. The World Health Organization (WHO) has
labelled it as the second most prevalent cause of blindness
worldwide. There is a huge increment in glaucoma patients every
year; the estimated number of possible glaucoma patients
worldwide in the forthcoming decades has shown frightening
escalation. It is estimated that ∼60 million individuals currently
suffer from blindness globally due to glaucoma [1] and this figure
will further increase to 76 million by 2020 [2]. Glaucoma is a
group of eye diseases that have common conducts such as elevated
intraocular pressure, damage to optic nerve head, gradual vision
loss and ultimately blindness. Glaucoma diagnosis is a clinical
diagnosis since it cannot be detected with blood or definite genetic
test. Diagnosis in the early period is very crucial to prevent
blindness; hence, regular screening of patient can aid in diagnosing
disease at an early and treatable stage. Existing pre-diagnosis is
invasive, expensive and time consuming; therefore, computer-aided
diagnosis (CAD) of glaucoma may become a game changer in the
coming years. The CAD is simple, repetitive, exceptionally fast in
the diagnosis and free from inter- and intra-observer variability.
The CAD can be very helpful in developing countries where there
is a scarcity of ophthalmologist as it can bring the clinician to the
level of an expert observer.

Fundoscopy is capable of capturing objective, accurate and
precise quantitative information about optic nerve and retinal
structure. Optic disc (OD) is a point on the retina where the optic
nerve leaves the eye. Visual information is transmitted through
fibre nerves present in the optic nerve to the brain. In glaucoma,
decay of fibre nerves cause cup size to increase and as a result cup-
to-disc ratio (CDR) also increases. The CDR value ≤to 0.5 is
considered as normal whereas >0.5 is considered as glaucomatous.
In initial and intermediate stage of glaucoma, the vertical CDR
increases rapidly [3]. One way to quantify this disease is by
considering CDR and other structural features of the retina;
however, another way is by assessing the overall appearance and
texture of the retinal image.

Automated glaucoma diagnosis is one of the vibrant research
fields in biomedical imaging. Many image processing and machine
learning techniques have been applied to come up with more
accurate results. A recent study has used sparse dissimilarity
constrained technique for CDR calculation with 88% accuracy [4].
Super intensity pixel based CDR calculations achieved 90%
accuracy [5]. Thresholding and counting white pixels to calculate
CDR along with ISNT (inferior < superior < nasal < temporal) rules
for detection gained 94% accuracy [6]. In [7], threshold values
have been derived by performing statistical analysis of histogram
to segment cup and disc. Vessel bends for cup and disc detection
accomplished 88% accuracy [8]. Canny edge detector and
thresholding was applied on vessel free image to detect cup and
disc boundaries and attained 85% accuracy [9]. Similarly, the
overall appearance of the image has also been involved in
automated diagnosis of glaucoma, in a recent research various
texture features have been extracted using Gabor transformation
and achieved 93% accuracy using support vector machine (SVM)
classifier [10]. Two-dimensional (2D) discrete wavelet transform
(DWT) has been used to calculate texture features and attained a
total of 93% accuracy using SVM classifier in [11]. Global image
information has been extracted using an extension of generalised
moment pattern. PCA-DD classifier has been used, and 94%
accuracy has been gained in [12].

Our proposed novel system achieved 100% accuracy for
glaucoma referral. The prime innovation of proposed system lies in
the formation of two distant, versatile and hybrid features set used
in the detection process. In addition, a novel algorithm to compute
regular, compact super-pixels calculation with low computational
overhead is proposed. Our unique super-pixel calculation algorithm
outperformed other current state-of-the-art methods with 94%
sensitivity. Also, a new CDR calculation method has been
introduced to accomplish high accuracy rate in CAD system by
involving two different colour channels for cup and disc
segmentation.

The outline of the paper is as follows. Section 2 gives precise
detail of proposed methodology. Section 3 explains different
structural features involved in hybrid structural feature-set (HSF)
module. Section 4 describes various textural and intensity-based
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features included in hybrid texture feature-set (HTF) module.
Section 5 describes imaging databases, experimental setup, and
Section 6 gives results. The paper concludes in Section 7.

2 Proposed methodology
HSF and HTF are the two core modules of the proposed system.
The HSF module further includes CDR computation, vertical rim-
to-disc ratio (RDR) calculation and cup shape analysis from the
enhanced (Enh) image. Three structural features () are calculated
and used for classification in HSF module. Whereas, HTF module
consists of two sub-modules; first sub-module includes rim vessel
extraction and computation of texture features from extracted rim
vessels and second sub-module consists of the formation of feature
set based on texture and intensity-based features extracted from
automatically cropped OD part of Enh image. In HTF module
overall 115 texture and intensity based features ( f 4– f 118) has been
extracted for classification. Both modules use SVM along with
radial basis function (RBF) for classification. Results from HSF
and HTF module are correlated to make a final decision. The final
determination also f 1– f 3includes a third class known as suspected
class. If results of both modules do not converge on a single
decision than sample is classified as suspected. Fig. 1 depicts the
complete methodology. 

Fundus image has been pre-processed before structural and
texture feature extraction for better results. Spatial resolution has
been improved using bilinear interpolation technique [13]. After
image scaling, OD segmentation has been done [14]. Histogram

equalisation technique has been employed to increase the contrast
of cropped image [15]. The purpose of pre-processing is to cater
images acquired from different fundus camera having different
resolutions. In pre-processing, all input images are scaled and
region of interest of size 200 × 250 containing OD is cropped.
Fig. 2a shows Enh image after histogram equalisation. 

3 HSF module
3.1 CDR calculation ( f 1)

CDR is one of the main clinical indicators involved in glaucoma
diagnosis [16]. In glaucoma, due to decay of fibre nerves the cup
size increases causing a significant difference between CDR value
of glaucomatous and healthy eye. The CDR value >0.5 indicates
glaucoma effected eye [3]. The complete process of proposed CDR
calculation involving two different colour channels for cup and
disc segmentation is described in Fig. 3. 

3.1.1 Disc segmentation: We applied mean, median and Otsu's
thresholding methods for cup and disc segmentation but we
obtained best fits for OD segmentation using thresholding value T 
= 0.4. Fig. 2b represents red channel of Enh image, as it can be
seen that red channel gives maximum visibility of disc, which
makes it the most suitable channel for disc segmentation. Likewise,
in disc segmentation process the binary image obtained after
thresholding red channel is displayed in Fig. 4c. The imperfections
encountered in the binary image after thresholding has been
removed using morphological opening [17]. Fig. 4d shows image
after morphological opening, and it can be observed that after
morphological opening all small objects creating noise around OD
are removed, and it also makes disc boundary smooth. Moreover,
the opening will also open up gaps between large noisy objects
around the disc, and all those large noisy objects having an area
smaller than 20,000 pixels have been further removed [18]. Fig. 4e
shows pure disc area after removing all noisy objects. Convex hull
methodology has been applied to compute total area of the disc.
After noise removal, only relevant bright pixels participating in
disc area are left. Calculating convex hull will include all bright
parts into single disc area and also fills any holes or unfilled
portion as shown in Fig. 4f. Finally, canny edge detector has been
used to identify the boundary of extracted disc area. The accuracy
of extracted boundary is verified by plotting it on the original
boundary as shown in Fig. 4g. Vertical length of the disc has been
computed using ‘Bounding Box’ [19]. The bounding box is then
plotted in Fig. 4h to visualise the accuracy of estimated vertical
length of disc. 

3.1.2 Cup segmentation: Blue channel of Enh image has been
used for cup segmentation. Blue channel generated the maximum
visualisation of the cup as shown in Fig. 2d. In blue channel, most
of the blood vessels automatically merge into cup area, making it
appropriate for error free cup segmentation. Thresholding blue
channel of Enh image using threshold value T = 0.9, a binary image
as shown in Fig. 5c has been obtained during cup segmentation.
The salt noise has often been encountered in extreme corners of the
binary image after thresholding. Therefore, the salt noise has been
removed using minimum filter. Morphological closing using a
large circular structuring element has been used to combine all
remaining bright pixels into the single cup area as shown in
Fig. 5d. After morphological closing, all connected objects smaller
than 5000 pixels have been removed. Convex hull has been used to
calculate total cup area as shown in Fig. 5e. Canny edge detector is
applied to find boundaries of extracted cup area and derived cup
boundaries are plotted on original image as shown in Fig. 5f.
‘Bounding box’ has been used to compute the vertical diameter of
the cup, ‘bounding box’ capturing cup area is plotted in Fig. 5g. 

3.1.3 Cup-to-disc ratio: The CDR has been calculated by taking
the percentage of cup vertical diameter (CVD) to the disc vertical
diameter (DVD) as described in the following equation:

Fig. 1  Overview of proposed system architecture
 

Fig. 2  Enh image after histogram equalisation
(a) Enh image, (b) Red channel of Enh image, (c) Green channel of Enh image, (d)
Blue channel of Enh image
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CDR = CVD
DVD (1)

3.2 Vertical RDR calculation ( f 2)

The neuro-retinal rim (NRR) is the area between cup and disc
boundary that contains axons of fibre nerve. In glaucoma, the
degeneration of fibre nerves imposes rim size to decrease. The first
fibre nerves effected by glaucoma are in the superior and inferior
region of NRR [3]. The inferior is the bottommost region of NRR,
whereas superior is the topmost region of NRR. In our case, we
have computed vertical NRR (VNRR) which is the thickness of
superior part of rim only, and it is computed by taking the
difference of upper y-coordinates of cup and disc bounding box.
Similarly, RDR is calculated by taking the ratio of VNRR to the
DVD as described in (2). It is distinguishable from CDR value as a
decrease in RDR value signifies glaucoma. In some cases, where
CDR values fail to generate accurate classification results, RDR
values can play a substantial role by analysing thickness of
superior region. RDR value <0.1 is considered as glaucomatous
[20]. Since the decrease in VNRR is one of the signs of glaucoma
[21], hence we have used RDR as an indicator of glaucoma in HSF
module

RDR = VNRR
DVD (2)

3.3 Cup shape analysis ( f 3)

Fractal analysis can be used for classification of medical images on
the base of regularity and irregularity of the contour of specific
objects [22]. One of the early symptoms for glaucoma diagnosis
involves changes in the cup shape, and in initial stages, it has been
found that glaucoma causes changes in the cup shape due to
movement of vessels, and it is more regular in glaucoma eye
whereas in the normal eye it is more irregular. Similarly, fractal
dimension for glaucoma eye is smaller due to its regular shape
whereas it is greater for normal eye due to more irregular shape
[23]. Hausdorff's dimension is one of the primary approaches used
to find fractal dimension. In the proposed solution, Hausdorff's
fractal dimension of cup contour has been calculated to analyse cup
shape. Cup boundary extraction has been achieved by the erosion
of extracted cup (Fig. 5d) and then subtraction of eroded cup from
initially extracted cup area. Figs. 6a and b shows extracted cup
contour of normal and glaucoma eye, respectively. 

Considering an object that has Euclidean dimension E, the
Hausdorff's fractal dimension D0 can be computed by the following
expression:

D0 = lim
ϵ → 0

log N (ϵ)
logϵ−1 (3)

where N(ϵ) is the counting of hyper-cubes of dimension E and
length ϵ that fill the object.

Hausdorff's dimension calculation algorithm [24] used in
proposed methodology can be described as following:

Step 1: Pad the segmented cup contour image (Fig. 6) with
background pixels so that its dimensions are a power of 2.
Step 2: Set the box size ‘ ϵ’ to the size of the image.

Fig. 3  CDR calculation flowchart
 

Fig. 4  Binary image obtained after thresholding red channel
(a) Enh image, (b) Red channel of Enh image, (c) Thresholding, (d) Morphological
opening, (e) Large noisy objects removal, (f) Convex hull, (g) Disc boundary
detection, (h) Vertical diameter

 

Fig. 5  Binary image obtained during cup segmentation
(a) Enh image, (b) Blue channel of Enh image, (c) Thresholding blue channel, (d)
Morphological closing, (e) Computing convex hull, (f) Cup boundary detection, (g)
Vertical cup diameter

 

Fig. 6  Extracted cup contour of normal and glaucoma eye
(a) Normal eye's cup contour, (b) Glaucoma eye's cup contour
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Step 3: Compute N(ϵ), which corresponds to the number of boxes
of size ‘E’ which contains at least one object pixel.
Step 4: If ϵ − > 1 then ϵ = ϵ − /2 and repeat step 3.
Step 5: Compute the points log (N(ϵ)) × log(1/ϵ) and use the least
squares method to fit a line to the points.
Step 6: The returned Hausdorff's fractal dimension D is the slope of
the line.

The fractal dimension values found to be in range of 1.11–1.15
for glaucoma eye and for normal eye the range was 1.16–1.25.

4 HTF module
4.1 Rim vessels extraction ( f 4– f 9)

Vascular changes can be one of the early indicators of glaucoma
[25]. Vascular changes and abnormal appearance such as vessel
haemorrhage, distortion and thickness can play a crucial role in
glaucoma diagnosis [26]. The primary and most effected vascular
portion in glaucomatous eye is the rim portion of OD. In the
proposed method, only blood vessels of rim area are extracted from
the entire OD portion. In rim vessel detection process first blood
vessel segmentation has been performed by multilayered
thresholding based blood vessel segmentation proposed in [27]. In
this segmentation process, first vessel enhancement has been
achieved using 2D Gabor wavelet then thresholding based vessel
segmentation has been performed. The thin blood vessels along
with thick ones have been extracted using multilayered
thresholding. After blood vessel segmentation from the OD image,
rim vessels have been further extracted by applying a rim mask on
extracted OD vessels. Rim mask has been developed by already
extracted cup and disc area. The following six features are further
obtained from rim vessels:

(1) Total area covered by vessels map of NRR ( f 4)
(2) Mean of the areas in the vessel map of NRR ( f 5)
(3) Kurtosis of the distribution of areas of the vessels in the NRR
( f 6)
(4) Standard deviation of the distribution of areas of the vessels in
the NRR ( f 7)
(5) Variance of the distribution of areas of the vessels in the NRR
( f 8)
(6) Skew of the distribution of areas of the vessels in the NRR ( f 9)

4.2 Grey level co-occurrence matrix (GLCM) ( f 10– f 14)

The excavation caused by the decay of fibre nerves in OD of
glaucoma eye can be captured using GLCM features. GLCM
provides statistics about the relative location of the neighbourhood
pixels in an image [28]. Let P(i, j) is GLCM for an image l of size
m × n. Following five GLCM features [29] are extracted and
employed in the proposed system.

1. Contrast ( f 10)

CT = ∑
n = 0

G − 1
n2 ∑

i = 1

G

∑
j = 1

G
P(i, j) , | i, j | = n (4)

2. Entropy ( f 11)

ET = ∑
i = 0

G − 1
∑
j = 0

G − 1
P(i, j) × | log(P(i, j)) (5)

3. Correlation ( f 12)

CR = ∑
i = 0

G − 1
∑
j = 0

G − 1 {i × j} × P(i, j) − {μx × μy}
σxσy

(6)

4. Cluster shade ( f 13)

CS = ∑
i = 0

G − 1
∑
j = 0

G − 1
{i + j − μx − μy}3 × P(i, j) (7)

5. Energy ( f 14)

EG = ∑
i = 0

G − 1
∑
j = 0

G − 1
(P(i, j))2 (8)

-----------------------------------------------------------------------------
--------------------------

In above, G denotes the number of grey levels used and μx, σx,
μy, σy  are means and standard deviations of Px and Py. Px i  is the

ith entry obtained by summing the rows of P(i, j).

4.3 Discrete wavelet transform ( f 14– f 54)

DWT can be used to extract both frequency and location
information. Instead of obtaining global image features, it collects
details in horizontal, vertical and diagonal orientations. The main
purpose to use DWT as a texture feature in proposed solution is to
capture changes which appear on OD to differentiate between
normal and glaucoma cases. In the digital image, the smooth
variations in colours are known as low-frequency variations, and
sharp variations are termed as high-frequency variations. One way
to isolate smooth variations and details from an image is by using
DWT. This linear transformation functions on data vector with
length of integer power of two. It isolates each data into distinct
frequency modules and then studies each module with matching
resolutions to its scale. The computation of DWT has been done
with cascade of filtering followed by a factor 2 sub-sampling.
Outputs of high- and low-pass filters have been given by [30]

aj + 1 P = ∑
n = − ∞

+∞
l n − 2p a j n (9)

d j + 1 P = ∑
n = − ∞

+∞
h n − 2p a j n (10)

where aj subscript elements are used for next step of the transform
and d j subscript element is wavelet coefficients, which finalise the
transform output. l[n] is the low-pass filter coefficient and h[n] is
the coefficient of high-pass filters. Supposing that scale j + 1 has
half number of a and d elements than scale j causes DWT to be
done until only two aj subscript elements known as scaling
function coefficients left in signal to analyse. In the proposed
system, 1 × 20 feature vector containing the first two moments of
wavelet coefficients have been extracting using single-level
discrete 2D wavelet transform. A total of 40 features are extracted
using this approach.

4.4 Mean grey-level ( f 55)

Cup is the brightest region in OD. In glaucoma eye because of
widen cup, the mean grey-level of OD is found to be greater than
normal eye. The mean grey-level of OD image has been computed
by converting RGB image to grey scale followed by its mean
calculation.

4.5 Grey-level run length ( f 56– f 62)

A grey-level run is a collection of successive, collinear image
pixels with similar grey level value. The element p(i, j) of matrix
states the count of a run of length j with grey level i in given
direction [31]. In digital images with rough texture, grey-level runs
are found to be longer than smooth texture images [32]. In normal
eye relatively more grey-level runs are found due to rough texture
as compared to glaucoma eye. In proposed method, seven texture
features from the run-length matrix are extracted, and out of these
seven features, five features introduced by Galloway [31] are as
follows.

4.5.1 Short runs emphasis ( f 56): In this function each run length
value is divided by the length of the run squared
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SRE = 1
nr

∑
i = 1

M

∑
j = 1

N P(i, j)
j2 = 1

nr
∑
j = 1

N Pr( j)
j2 (11)

4.5.2 Long runs emphasis ( f 57): In following function each run
length value is multiplied by the length of the run squared

LRE = 1
nr

∑
i = 1

M

∑
j = 1

N
P(i, j) − j2 = 1

nr
∑
j = 1

n
Pr( j) − j2 (12)

4.5.3 Grey-level non-uniformity ( f 58): Following function first
takes square of total number of run lengths for each grey level, and
then obtained sum of the squares is divided by the normalising
factor of the total number of runs in the image

GLN = 1
nr

∑
i = 1

M

∑
j = 1

N
P(i, j)2 = 1

nr
∑
j = 1

N
Pg(i)2 (13)

4.5.4 Run length non-uniformity (RLN) ( f 59): Following
function takes square of the number of runs for each length, and
then obtained sum of the squares is divided by the normalising
factor

RLN = 1
nr

∑
j = 1

N

∑
i = 1

M
P(i, j)2 = 1

nr
∑
j = 1

N
Pr(i)2 (14)

4.5.5 Run percentage (RP) ( f 60): Following function is the
percentage of the total number of runs to the total number of
possible runs

RP = nr
np

(15)

Apart from these five basic grey-level run length matrix features,
two additional features proposed by Chu et al. [33] are also
involved in feature set. These two features are defined as follows.

LGRE = 1
nr

∑
i = 1

M

∑
j = 1

N P(i, j)
i2 = 1

nr
∑
j = 1

N Pg(i)
i2 (16)

4.5.7 High grey-level run emphasis (HGRE) ( f 62): 

HGRE = 1
nr

∑
i = 1

M

∑
j = 1

N
P(i, j) ⋅ i2 = 1

nr
∑
j = 1

N
Pg(i) ⋅ i2 (17)

where nr and np are the total number of runs and total number of
pixels in the image, respectively. Considering that most features are
only functions of Pr( j), without observing the grey-level
information contained in Pg(i).

4.6 Segmentation-based fractal texture analysis (SFTA)
( f 62– f 110)

Complexity of shape can be assessed and measured using fractal
dimension. In normal eye, cup boundary is more irregular due to
presence of large blood vessels as compared to glaucomatous eye
OD (see Fig. 6). A proficient SFTA has been proposed in [24]. The
SFTA algorithm consists of two main parts: first decomposition of
the input image into groups of binary images using two-threshold
binary decomposition (TTBD) algorithm. Next fractal dimension
of each resultant binary image has been computed. The TTBD
further consists of two main parts: first a set of thresholding values
calculated using multi-level Otsu algorithm, second the grey-scale
image I(x, y) has been disintegrated into group of binary images by
choosing pairs of threshold values from T and two-threshold
segmentation has been applied as follows:

Ib(x, y) =
1, if tI < I(x, y) ≤ tu
0, otherwise

(18)

where t1 is the lower threshold value and tu is the upper threshold
value. Similarly, the region boundaries Δ(x, y) of binary image Ib
(x, y) have been computed as follows:

Δ(x, y) =

1, if ∃(x′ − y′) ∈ N8[(x, y)]
Ib(x′ − y′) = 0 ∧
Ib(x′ − y′) = 1

0, otherwise

(19)

In above, N8 [([(x, y)])] is the group of eight-connected pixels to (x,
y). If pixels at location (x, y) in resultant binary image I_b (x, y) has
1 value and at least one of neighbourhood pixel with 0 value, then
1 value is assigned to Δ(x, y), else 0 value is assigned to Δ(x, y).
The fractal dimension D0 of each border image has been computed
using (3).

In the proposed method, SFTA algorithm is used for texture
analysis. It requires the user to set the parameter nt which defines
the number of thresholds that will be employed in the input image
decomposition. Algorithm returns a 6 ∗ nt  vector D mined from
the input image. In our case nt = 8 has been used because it has
given best results for classification, and 48 features have been
extracted using SFTA algorithm.

4.7 Brightness ( f 111)

Glaucoma effected OD has overall more brightness due to the large
size of the cup and less number of nerve fibres. RGB pixels have
been converted to brightest values using the following
equation[34]:

V = 0.299R + 0.587G + 0.114B (20)

Default weighted factors for RGB to YUV conversion have been
used to compute brightness.

4.8 Colour moments ( f 111– f 117)

The enlarged cup in glaucomatous eye forms a smoother variation
in colours as compared to normal eye. Colour moments can be
used to obtain global image features unlike DWT. It can be used to
measure colour similarities between images. In colour moments,
the occurrence of a colour in an image is represented as a
probability distribution function. First two colour moments mean
and standard deviation has been used to analyse colour similarities
in the proposed system. RGB colour image has been first
decomposed into red, green and blue channels, then moment
described in (21) and (22) have been calculated for each channel
[35]. In our case, six colour moments have been computed by
calculating first two moments of each channel

Mean = 1
N2 ∑

x = 1

N

∑
y = 1

N
f x, y (21)

Standard deviation = 1
N2 ∑

x = 1

N

∑
y = 1

N
f x, y − μ 2 (22)

4.9 Super-pixels ( f 118)

In glaucoma eye OD, due to cup enlargement and degeneration of
fibre, the numbers of super-pixels in the red channel of glaucoma
eye OD are usually greater than the number of super-pixels in red
channel of normal eye OD. In the proposed method, all pixels in
the red channel of OD image are termed as super-pixels with pixel
values larger than or equal to threshold T = 0.9. Following
expression explains the thresholding strategy:
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g(x, y) = 1, if f (x, y) ≥ 0.9
2, if f (x, y) < 0.9 (23)

After thresholding, all survived super-pixels in image g (x,y) have
been calculated. Figs. 7a and b shows super-pixel calculation
process and results of normal and glaucoma OD, respectively. It
can be noted that there is a considerable difference in the total
number of super-pixels in normal and glaucoma OD. 

5 Classification and grading
In the proposed system, classification is performed on HTF and
HSF features separately and SVM has been used as classifier. SVM
is famous for best handling of multi-dimensional data, binary
classification and robustness added with help of different kernels
[36]. In our case, we have used RBF as kernel along with SVM.
Both modules use SVM independently and make a binary decision
about glaucoma based on input feature vector. HSF module uses all
features explained in Section 3 to classify input image as glaucoma
or normal. Similarly, HTF module uses all features explained in
Section 4 to make same decision. The proposed system then makes
a final decision after correlating results of both the classifiers. The
input image is labelled as glaucoma if both the modules categorise
it as glaucomatous; similarly, if both the modules grade it as
healthy then it is classified as healthy. However, if the results of
both the modules do not match then it is considered as suspected.

6 Results
6.1 Datasets

The proposed system has been tested on publicly available
glaucoma database (Glaucoma DB) consisting of 100 labelled
images annotated by ophthalmologists with clinical CDR (CCDR)
values, which are used as a benchmark for the computed CDR
values [37]. Dataset consists of 52 normal and 48 glaucoma images
captured using Top Con TRC 50EX camera with a resolution of
1504 × 1000.

6.2 Results

Performance analysis is done using sensitivity, specificity and
accuracy as performance measures. The evaluation is first
performed for HTF and HSF modules separately and then analysis
of final result obtained by correlating results from both modules.
Table 1 shows the evaluation of proposed system with different
kind of features. Comparison between performance accuracy of
isolated and combined feature for automated glaucoma detection
can be made by analysing table data. The experiments have been
conducted using ten-fold cross-validation technique and SVM
classifier along with RBF is used. In case of sensitivity, proposed
super-pixels feature outperforms others with sensitivity of 94%.
Wavelet features showed best overall performance with 91%
accuracy and 92% specificity. In the case of hybrid feature sets,
different combinations of features have been analysed, but
maximum accuracy is achieved by combining all isolated texture
features. 

Table 2 shows confusion matrix for HTF module, it has been
able to detect 46 out of 48 glaucoma cases accurately and 48 out of
52 normal cases accurately. Concisely, HTF module has been able
to identify 94 out of 100 cases correctly, i.e. 94% accuracy with
96% sensitivity and 92% specificity. Results of HTF module reveal
that texture features can capture appearance-based changes and
intensity variation caused by glaucoma and can be effectively used
to achieve high sensitivity rate. 

Similarly, a comparison of classification results of isolated and
combined structural features has been conducted in Table 3.
Results showed that in case of isolated structural features, CDR
structural feature performed the best with 78% accuracy, but
maximum accuracy has been gained by the grouping of all isolated
structural features, i.e. the HSF module which achieved maximum
accuracy of 83% with the maximum specificity of 88%. 

Confusion matrix for HSF module is shown in Table 4. HSF
module has been able to detect 37 out of 48 glaucoma cases and 46
out of 52 normal cases accurately. HSF module has been able to
identify 83 out of 100 cases accurately with 77% sensitivity and
88% specificity. 

A comparison of CDR and CCDR values has been made to
analyse the performance of proposed CDR calculation method.
Fig. 8 illustrates that the maximum deviation of computed CDR
values from CCDR values is 0.37. Mean error of the proposed
system has been 0.11. Fig 8 and Table 5 represent comparison of

Fig. 7  Super-pixel calculation process and results of normal and
glaucoma OD
(a) Super-pixels in normal OD, (b) Super-pixels in glaucoma OD

 
Table 1 Comparison of isolated and hybrid texture features
classification results

Accuracy Specificity Sensitivity
GLCM features 84 83 85
super-pixels 63 35 94
brightness 56 27 88
wavelet features 91 92 90
grey-level run length 72 73 71
mean grey level 48 40 56
colour moment 76 69 83
SFTA 84 87 81
rim-vessels features 57 63 50
wavelet features 86 83 90
grey-level run length mean grey
level
GLCM features 62 48 77
super-pixels
brightness
colour moment 83 87 79
SFTA rim-vessels features
GLCM features 70 83 56
grey-level run length
vertical RDR
rim-vessels features
SFTA 90 88 92
wavelet features
brightness
wavelet features 81 79 83
GLCM features
super-pixels
colour moment 60 54 67
brightness
super-pixels grey
grey-level run length
HTF module (combined) 94 92 96
 

Table 2 Confusion matrix for HTF module
Healthy Glaucoma

healthy 48 4
glaucoma 2 46
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CCDR values and CDR values of 55 randomly selected images
from whole local database. 

One of the novel contributions of proposed system is the
inclusion of ‘suspect’ class in the decision. Here, results from HSF
and HTF modules are correlated in a way that if results do not
converge on a single decision, then they are classified as suspected.
Patients classified as suspected, or glaucomatous, are referred to
specialists for further detailed investigation. The confusion matrix
with inclusion of suspect class is shown in Table 6. These results
demonstrate that final CAD system after correlating results from
both modules has generated outstanding and improved results with
100% accuracy for referral of glaucoma cases. 

Enhanced performance of proposed system shown in Tables 1,
2 and 6 have outperformed the results presented in recent work of
Akram et al. [37] and Khan et al. [6]. Algorithm in [6] was
evaluated on a dataset of 50 images composed from MESSIDOR,
HEI-MED, DRIVE, STARE and DiaRetDB0 publically available
databases of fundus images. Whereas in [37] same database as used
in proposed system has been used. Comparison of proposed CAD
system with the algorithm in [6, 37] is shown in Table 7. 

7 Discussion and conclusion

The menace of glaucoma can be harnessed with the proposed
versatile CAD system which outperforms its contemporary
automated models in many ways. Existing methods mostly rely of
CDR and few have used features along with classification for
diagnosis of glaucoma. These methods suffer from low sensitivity
due to presence of noise and other changes. In order to improve
sensitivity, the proposed system has a unique combination of robust
structural and textural features including a novel proposed super-
pixels based feature. The combinations of structural and textural
features in both modules have been finalised after a rigorous

Table 3 Comparison of isolated and hybrid structural
features classification results
Technique Accuracy Specificity Sensitivity
CDR 78 83 73
vertical RDR 73 62 85
cup boundary 61 63 58
CDR 74 85 63
cup boundary
CDR 52 10 98
vertical RDR
vertical RDR 74 65 83
cup boundary
HSF module (combined) 83 88 77

 

Table 4 Confusion matrix for HSF module
Healthy Glaucoma

Healthy 46 6
Glaucoma 11 37

 

Fig. 8 
Error and mean error in CDR values compared with CCDR values

 

Table 5 CDR values computed by proposed methodology
Image CDR CCDR Image CDR CCDR Image CDR CCDR
1 0.74 0.4 20 0.42 0.6 39 0.5 0.5
2 0.45 0.4 21 0.53 0.6 40 0.8 0.4
3 0.75 0.75 22 0.45 0.5 41 0.45 0.3
4 0.51 0.6 23 0.5 0.45 42 0.49 0.6
5 0.61 0.7 24 0.52 0.4 43 0.39 0.6
6 0.44 0.4 25 0.52 0.8 44 0.47 0.4
7 0.67 0.3 26 0.5 0.5 45 0.58 0.4
8 0.46 0.3 27 0.66 0.4 46 0.51 0.7
9 0.48 0.4 28 0.5 0.5 47 0.43 0.3
10 0.47 0.4 29 0.49 0.5 48 0.44 0.5
11 0.51 0.6 30 0.48 0.4 49 0.53 0.6
12 0.5 0.5 31 0.51 0.55 50 0.55 0.5
13 0.46 0.5 32 0.48 0.5 51 0.47 0.3
14 0.52 0.5 33 0.4 0.5 52 0.6 0.75
15 0.51 0.6 34 0.41 0.3 53 0.58 0.7
16 0.6 0.7 35 0.58 0.8 54 0.38 0.48
17 0.57 0.3 36 0.78 0.8 55 0.32 0.4
18 0.39 0.5 37 0.54 0.4
19 0.39 0.5 38 0.55 0.8

 

Table 6 Correlating results from HTF and HSF modules
Healthy Glaucoma Suspected

Healthy 42 0 10
Glaucoma 0 35 13

 

Table 7 Comparison of results with already deployed
techniques

Specificity, % Sensitivity, % Accuracy, %
proposed HSF module 88 77 83
proposed HTF module 92 96 94
glaucoma detection
using hybrid feature
set [37]

92.9 87.5 90.84

glaucoma detection
using CDR and ISNT
rule [6]

85 73 82
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analysis process. Primarily, performance of each feature has been
analysed individually, results showed no redundant feature
(Tables 1 and 3). Then, performances of several possible
combinations of features have been tested. Texture features such as
local binary patterns and autocorrelograms have been removed
from HTF module because these features were reducing overall
accuracy of system. Finally, the combinations of structural and
textural features with maximum accuracy and best performance
have been selected. The superior performance of proposed system
also lies in the fact that we have utilised structural and textural
information of optic nerve head. We have used two different
channels for the cup analysis, i.e. blue channel for cup boundary
calculation and red channel in the cases where illumination noise is
present. In fundus images, the background colour tone varies from
patient to patient. So even images acquired from same camera have
different intensities [38] which affect the robustness of CAD
systems. Threshold values and binary object (in our case disc and
cup) sizes vary due to two main reasons, i.e. different spatial
resolution and different intensities. In pre-processing step, both
these issues have been addressed by scaling, enhancement and
cropping of input image. These pre-processing methods also enable
system to deal with the issues of images acquired from different
cameras. Finally, the best empirically tested values for thresholding
and size parameters for cup and disc segmentation are selected. We
have applied texture analysis on red channel to capture intensity
variations caused by glaucoma, and results have shown tremendous
improvement. The proposed system also included a third decision
class, i.e. suspect which helped in screening out glaucoma patients
with 100% accuracy since not a single glaucoma case has been
referred as normal. Hence, in rural areas where there is a scarcity
of ophthalmologist, the proposed system can be used for glaucoma
diagnosis and only genuine cases can be forwarded to the specialist
for further examinations. Fundus image does not provide in depth
analysis of optic nerve and it is being carried out using optical
coherence tomography (OCT) images. In future we can use fundus
and OCT image and fuse their analysis to get more accurate and
reliable results for diagnosis of glaucoma.
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