GEOLOGICAL, STRATIGRAPHICAL MODELLING OF MAKRAN OFFSHORE

By

AINAL JABEEN Bs (geophysics) 2012-2015

DEPARTMENT OF EARTH & ENVIRONMENTAL SCIENCES BAHRIA UNIVERSITY KARACHI

ACKNOWLEDGMENT

In the name of Allah, The most Beneficent, The most Merciful, All praises to Almighty Allah, The creator of Universe. I bear witness that Holy Prophet Hazrat Muhammad (P.B.U.H) is the last Messenger, whose life is a perfect Model for the whole mankind till Earth, I am enabled to complete my work, without the blessing of Allah, I could not be able to complete my work as well as to be at such a place.

1 am especially indebted to my dissertation supervisor MS Shaista Iftikhar for giving me an initiative to this study. Her inspiring guidance and dynamic supervision helped me to complete this work on time. I pay my thanks to whole faculty teacher whose valuable knowledge, assistance, Cooperative and Guidance enabled me to take initiative, develop and furnishing my Academic Carrier.

Ainal Jabeen

BS (Geophyics)

<u>ABSTRACT</u>

The Makran accretionary prism developed in the north-western part of the Indian Ocean as a consequence of the subduction of the Arabian Sea since Late Cretaceous times. we surveyed most of the accretionary complex of Pakistan with R/V Marion Dufresne . Th Makran accretionary prism results from the northward motion of the oceanic crust (White and Klitgord, 1976; White, 1983; Minshull et al., 1992), with an average speed of 3 cm/year at present. Large historic earthquakes, such as the magnitude 8.2 recorded in November 1945 (Pacheco and Sykes, 1992; Byrne et al., 1992), are clearly related to the shallow dipping inter-plate mega-thrust. The coseismicmotion might be related to the episodic uplift of small mud volcanoes rising up above the sea-level, confirming an overpressure regime imposed at depth.

Table of Content

Chapter 1

1.1	Introduction:11
1.2	General Background: 11
1.3	Introduction about Makran Area:12
1.4	Objective of the Thesis:16

Chapter 2

2.1	Introduction Geology of Makran Zone:	18
2.2	Makran Seismicity Studies:	19
2.3	Makran Tectonic and Structural Studies:	21
	2.3.1 Fault Activity in Makran:	21
2.4	Makran's Ore Deposit and Hydrocarbon Studies:	24
	2.4.1 Gas Hydrates Distribution:	24
	2.4.1.1 Introduction:	24
	2.4.1.2 Hydrocarbon potential or Gas Hydrate distribution in Makran:	25
	2.4.1.3 Source Rock:	26
	2.4.1.4 Reservoir Rocks:	27
2.5	Sedimentory Inputs:	29
	2.5.1 Sources of Makran Turbidities:	29
2.6	Stratigraphy of the Makran:	31
	2.6.1 North Makran Area:	31
	2.6.2 Inner Makran:	32
	2.6.3 Outer Makran:	34

2.6.4 Coastal Makran:	34
-----------------------	----

Chapter 3

3.1	Introduction:	36
3.2	History of seismic Exploration:	37
3.3	Elastic Properties of Solid:	38
	3.3.1 Stress:	38
	3.3.2 Strain:	38
	3.3.3 Stress Strain Relationship:	
	Fundamental laws of Seismic:	39
3.4	Fundamental laws of seismic	40
3.5	Seismic Data Acquisition:	41
3.6	Seismic Data Processing:	43
	3.6.1	
	3.6.2	44

Chapter 4

4.1	Introductio	45
4.2	the seismic section	45
4.3	identification of horizon	45
4.4	tie the seismic section	45
4.5	confirming with loop tie	46
4.6	interPretation of some geological features	46

4.7	metho	od for interpretation of seismic data	46
	4.7.1 4.7.2	structural analysis stratigraPhic analysis	
4.8	data i	nterpretation	47
	4.8.1	Pasni 1	47
4.9	stru	ctural interpretation	48
	4.9.1	faults	48
	4.9.2	folds	49
	4.9.3	uncomfirmity	49
-		gas chimney	
4.10	concl	hision	50
4.11	stru	ctural interpretation51	
4.12	4.11. strat	1 faults igraPhical interpretation	
	4.12	2.1 unconformity	53
4.1	3 con	iclusion	53

Chapter 5

5.1	Conclusions	55
-----	-------------	----

Refrence