STATIGRAPHIC AND STRUCTURAL MODELING OF TAJJAL BLOCK (KADANWARI FIELD),SINDH PAKISTAN

By

UJALA ZIA

BS GEOPHYSICS

DEPARTMENT OF EARTH & ENVIRONMENTAL SCIENCES BAHRIA UNIVERSITY KARACHI

(2012-2015)

ACKNOWLEDGEMENT

All praises for Almighty ALLAH, the most beneficial, the most merciful, compassionate The creator of the Universe who blessed me with the knowledge and enabled me to complete The research work. Without the kind blessing of whom, I could not be able to complete my Work and to be at such place.

All respect to Holy Prophet Hazrat Muhammad (P.B.U.H) who appeared and blossomed As model for whole of humanity.

I specially acknowledge the help the encouragement, endless love and prayers of my family Specially my loving and caring mother, which have always been a source of inspiration and Guidance for me all the way, whose invaluable prayers salutary advices and emboldening Attitude kept mu spirit alive to reach this milestone.

My sincere thanks go to Head of Department and my thesis supervisor **Dr. Mubarik Ali.** I am also very thankful to all the respected teachers of department of Earth Sciences Bahria University for giving me an initiative to this study. Their inspiring guidance, dynamic supe- Revision constructive criticism enabled to me to complete this thesis work.

ABSTRACT

The Purpose of this study is to unveil the reservoir properties of Lowe Goru sands of Kadanwari area in order to estimate the reservoir potential by carrying out Formation Evaluation technique, supported by computer generated attributes, and understand the general structural framework deciphered through integrated approach of seismic interpretation. The Kadanwari area belongs to the Middle Indus Basin where the stratigraphic sequence ranges from middle Jurassic to upper Pliocene ages. The area has been subject to complex deformation and declared to be evolved in three main tectonic events 1) The Cretaceous uplift of Kadanwari area towards north and west. 2) The sets of basement-rooted wrench faults oriented in north-west to southeast fashion in late Paleocene to early Eocene age. 3) The large scale basin inversion associated with basement related structural elements. The study area is structurally derived normal and trans tensional nature of forces which exhibits deep rooted and vertical to sub-vertical faults that emerges in negative flower structure at shallow level.

Although the quality of the seismic data is not effective enough to resolve discrete geological features at deeper level due to complex structuration and dynamic forces, but the seismic signatures somehow reveal very critical discontinuities among the Goru reservoirs when aided by seismic attributes. The petroleum system in the area is proven and productive as there several producing fields nearby. A base map of scale 1:50000 meters have been produced using Geoframe 2012/Petrel seismic workstation in order to carry out the seismic interpretation and attribute analysis. Due to data quality constraints, only K-3 well data well have been used to run the petrophysical analysis of the study area.

The horizons marked are G Sands, E Sands, and D Sands (Based on ENI nomenclature of Lower Goru sand intervals). Time and depth maps have been prepared to acknowledge the extent and dynamics of the structure at reservoirs level which shows that the horizons are deepening towards east and west of the study area and general trends of the faults lie in north-west to south-east direction over the study area making structural-cum-stratigraphic traps. The Isopach map of G sand suggests that the area is variable in thickness from north-west to south-east. The seismic attributes show that E sand has the satisfactory amplitude and frequency response that is required to meet the criteria of any gas bearing zone within the formation.

TABLE OF CONTENTS

Page#

<u>CHAPTER # 01</u> INTRODUCTION

1.1	Introduction	•		1
1.2	Introduction to Area			ĩ
1.3	2D Acquisition in Kadanwari Field			3
1.4	Base map			4
1.5 .	Acquisition Parameters _			6
1.6	Processing Sequence			8
1.7	Objectives		ID PROCIDENT	11

CHAPTER # 02

GENERAL GEOLOGY, TECTONIC AND STRATIGRAPHY OF THE AREA

Introduction -		12
		12
Geological Setting of Pakistan		12
Tectonic Zone of Pakistan		12
Sedimentary Basin of Pakistan		14
Southern Indus Basin		15
Kirthar Sub Basin		16
	Tectonic Zone of Pakistan Sedimentary Basin of Pakistan Southern Indus Basin	Geological Setting of Pakistan Tectonic Zone of Pakistan Sedimentary Basin of Pakistan Southern Indus Basin

S.No

2.7	Stratigraphy of The Area	17
2.8	Hydrocarbon Prospect of Kirthar Sub Basin	19
2.9	Geology of Kadanwari Field	21
2.10	Structure of The Area	22
2.11	Reservoir	23
2.12	Source	23
2.13	Seal	24
2.14	Тгар	24
2.15	Subsurface Model	24

CHAPTER # 03

.

SEISMIC DATA ACQUISITION AND PROCESSING			
3.1	Introduction to Seismic Method	25	
3.2	Seismic Data Acquisition	25	
3.3	Spread Configuration	27	
3.4	Shot Gather	28	
3.5	Acquisition Step	29	
3.6	Seismic Data Processing	31	
3.7	⁻ Demultiplex	- 32	
3.8	Trace Edit	32	
3.9	Filters	33	
3.10	Deconvolution	33	
3.11	-Sort -	33	
3.12	Stack	33	

3.13	Constant Velocity Analysis	34
3.14	Normal Move Out	34
3.15	Migration	34
3.16	Seismic Velocities	34
3.17	Velocity Determination	36
3.18	Bore Hole Velocities Measurement Technique	36
3.19	Uses of Seismic Velocities	37

CHAPTER # 04

INTERPRETATION

4.1	Seismic Interpretation		38
4.2	Interpretation Work Flow		38
4.3	Velocity Analysis	-	39
4.4	Iso Velocity Contour Map		43
4.5	Marking of Horizons		45
4.6	Fault Identification		45
4.7	Check Shot at Kadanwari-1		47
4.8	Seismic Time Section	-	48
4.9	Time to Depth Conversion		51
4.10	Depth Section		51
4.11	Seismic Modeling	•	52
4.12	ID Modeling		53

4.13	Generation of Wavelet	54
4.14	2D Seismic Modeling	56
4.15	Preparation of TWT and Depth Contour Map	58
4.16	Time Contour Map of E Interval	59
4.17	Time and Depth Contour Map of Sui Main Limestone	61
4.18	Time and Depth Contour Map of Upper Goru	62
4.19	Time and Depth Contour Map of Lower Goru	64
4.20	Time and Depth Contour Map of Chiltan Limestone	65
4.21	Stratigraphic Correlation in Kadanwari Field	67
4.22	Iso Pach Map of Lower Goru	69
4.23	Leads Formation And Well Proposals	69
4.24	Identification of Leads at E Interval	70
4.25	Structural and Stratigraphic Analysis of Kadanwari Gas Field	71

CHAPTER # 05

PETROPHYSICAL ANALYSIS AND ROCK PHYSICS OF RESRVOIR

5.1	Introduction	73
5.2	Gamma Ray Log	74
5.3	Resistivity Log	74
5.4	Sonic Log	74
5.5	Density Log	76
5.6	Neutron Log	76
5.7	Well Log Interpretation	77

5.8	Suggested Zone of Hydrocarbon	78
5.9	Kadanwari-1 Reservoir Summation	86
5.10	Rock Physics Parameter of Reservoir E Interval	88
CONC	CLUSION	94
REFRENCES		95

the multiple former on the multiple of reference does at the sector of t

allow of the product of the Daris Landse Albridg more than it of the Tarthis

ROT DRODECTION TO AREA.

The Lansan word you field and discovered by Lithich Oil Painers' Limited franch of the age of the second in the Limited franch of the second of the link of the land of the Lithich Oil Painers Cimited franch and the second of the link of the second of the Lithich Lithich Cimited franch proves of the land of the partner of the Lithich Lithich Lithich Cimited for the partner of the lithic for the