Study and Analysis of Cognitive Radio Network (CRN) as a Future Communication Network

By

Mubashar Iqbal Enrollment No. 01-133142-274

Wahab Khan Enrollment No. 01-133142-279

Supervised By

Dr. Junaid Imtiaz

Session 2014-18

A Report is submitted to the Department of Electrical Engineering, Bahria University, Islamabad.
In partial fulfillment of requirement for the degree of BS(EE).

Study and Analysis of Cognitive Radio Network (CRN) as a Future Communication Network

By

Mubashar Iqbal Enrollment No. 01-133142-274

Wahab Khan Enrollment No. 01-133142-279

Supervised By

Dr. Junaid Imtiaz

Session 2014-18

A Report is submitted to the Department of Electrical Engineering, Bahria University, Islamabad. In partial fulfillment of requirement for the degree of BS(EE).

Abstract

Cognitive Radio Network (CRN) helps in effective and efficient utilization of the frequency spectrum of licensed user by allocating the spectrum to cognitive users (CUs) when primary or licensed user (PU) is not using the spectrum. In a CRN there are number of CUs, each CU senses the spectrum of the PU and report the sensing result to the Fusion Center (FC) of the CRN which makes the final global decision about spectrum availability. This project aims to analyze a proposed technique Reporting Channel Based Contribution (RCBC) for performance optimization on spectrum sensing schemes in CRN. There are two important performance matrices for any CRN; detection probability and constraint on probability of false alarm. By increasing number of (CUs) in a CRN for sensing PU and reporting to the FC, performance of both performance matrices increase ideally. With Practical increase in number of users, there is reporting loss in the performance matrices and both of these matrices are highly degraded when large number of user is being reported at a time. RCBC count the effects of channel and signal quality to set optimize threshold for performance matrices, probability of Detection and probability False Alarm. The proposed technique RCBC limits the number of CU's contribution for the final global decision of Probability of False Alaram and Probability of Detaction. When RCBC is applied, number of collected samples changes along with the change in global performance matrices. Required numerical results achieved by mathematical expressions show change in the global probability of detection and false alarm with K out of N fusion rules on local performance matrices at FC. Proposed RCBC technique improved the highly degraded performance matrices results to make the decisions for spectrum usage by PU. These results also justify that for large number of CUs; reporting majority fusion rule with RCBC technique is the best approach to be used in future CRN.

Contents

1	Inti	troduction			
	1.1	Project Background	2		
	1.2	Problem Description	9		
	1.3	Project Objective	10		
	1.4	Project Scope	10		
2	Lite	erature Review			
	2.1	Cognitive Radios	15		
	2.2	The Motivation for Cooperative Sensing	16		
	2.3	Objectives and key Insights of System	18		
	2.4	Security Issues	25		
	2.5	System Architecture	29		
	2.6	Development Environment/Languages Used	31		
	2.7	Requirement Specifications	32		
		2.7.1 Existing System	32		
		2.7.2 New proposed Solution	34		
	2.8	System Testing and Evaluation	35		
		2.8.1 System Testing	35		
		2.8.2 Cognitive Radio Test System (CRTS)	38		
		2.8.3 Goals	39		
3	Sys	tem Model	41		
	3.1	Chapter Overview	42		
	3.2	System Model for CRN	42		
	3.3	Reporting Loss	44		

4	Rep	orting	g Channel Based Contribution	49
	4.1	Unit 7	Testing	52
	4.2	Testin	g the fully integrated applications	53
	4.3	Detail	ed description system implementation	54
	4.4	Repor	ting Channel Based Contribution (RCBC) Test	56
5	Nu	nerica	l Analysis	58
	5.1	Chapt	er Overview	59
	5.2	Detail	ed Numerical Analysis	59
	5.3	OR-Fu	usion Rule	60
		5.3.1	Global probability of Detection	61
		5.3.2	Global probability of False Alaram	61
	5.4	Major	ity-Fusion Rule	62
		5.4.1	Global probability of Detection	62
		5.4.2	Global probability of False Alaram	63
	5.5	And-F	Fusion Rule	63
		5.5.1	Global probability of Detection	64
		5.5.2	Global probability of False Alaram	65
6	Cor	clusio	n	73
Re	efere	nces	<i>n</i> .	75

List of Figures

1.1	Enhancement in technologies from 2000 onward	3
1.2	Relationship between two radio technologies	5
1.3	Cognitive radio spectrum sensing	7
1.4	Spectrum sensing environment	8
2.1	Frequency allocation chart by FCC	14

2.2	Spectrum Managment	15
2.3	A Cognitive radio system	16
2.4	Different decision algorithms	17
2.5	Cognitive cycle step by step procedure	19
2.6	Detection Designs at the base station	20
2.7	Spectrum sensing algorithms	22
2.8	Matched filter complete diagram	23
2.9	Matched filter frequency domain representation	24
2.10	Impulse response of Match filter	25
2.11	Number of social network users worldwide	27
2.12	Layers in cognitive radio technology	28
2.13	Dos Model	30
2.14	Cognitive Radio System Architecture	30
2.15	System deployment	31
2.16	Distributed time frames	32
2.17	Congestion effects	34
2.18	Cognitive cycle	35
2.19	CRATM	36
2.20	CRATM	38
0.1		10
3.1	System Model	43
3.2	Channel Effects of Wireless Medium	46
4.1	Process of mathematical modeling	52
4.2	Integration with internet of things	55
4.3	Threshold selections at the receiver	56
5.1	Ideal Case $\mathcal{P}_d[OR]$	61
5.2	Comparison of ideal and reporting loss for $\mathcal{P}_d[OR]$	62
5.3	Comparison of ideal and reporting loss with RCBC for $\mathcal{P}_d[OR]$	63
5.4	Ideal case for $\mathcal{P}_f[OR]$	64
5.5	Comparison of ideal and reporting loss for $\mathcal{P}_f[OR]$	65
5.6	Comparison of ideal and reporting loss with RCBC for $\mathcal{P}_f[OR]$	66

5.7	Ideal case for $\mathcal{P}_d[Maj]$	67
5.8	Comparison of ideal and reporting loss for $\mathcal{P}_d[Maj]$	67
5.9	Comparison of ideal and reporting loss with RCBC for $\mathcal{P}_d[Maj]$	68
5.10	Ideal Case for $\mathcal{P}_f[Maj]$	68
5.11	Comparison of ideal and reporting loss for $\mathcal{P}_f[Maj]$	69
5.12	Comparison of ideal and reporting loss with RCBC for $\mathcal{P}_f[Maj]$	69
5.13	Ideal case $\mathcal{P}_d[And]$	70
5.14	Comparison of ideal and reporting loss $\mathcal{P}_d[And]$	70
5.15	Comparison of ideal and reporting loss with RCBC for $\mathcal{P}_d[And]$	71
5.16	Ideal case for $\mathcal{P}_f[And]$	71
5.17	Comparison of ideal and reporting loss for $\mathcal{P}_f[And]$	72
5.18	Comparison of ideal and reporting loss with RCBC for $\mathcal{P}_f[And]$	72