
Automatic Categorization of Essays
Using Cloud Services

WAJID HUSSAIN

01-134141-141
AHMAD RAZA
01-134141-006

Bachelor of Science in Computer Science

Supervisor: Dr. Arif Ur Rahman

Department of Computer Science
Bahria University, Islamabad

December 2017

c© Wajid Hussain & Ahmad Raza, 2017

C e r t i f i c a t e

We accept the work contained in the report titled “Automatic Categorization of Essays
Using Cloud Services”, written by Mr. Wajid Hussain and Mr. Ahmad Raza as a confirma-
tion to the required standard for the partial fulfillment of the degree of Bachelor of Science
in Computer Science.

Approved by . . . :

Supervisor: Dr. Arif Ur Rahman (Assistant Professor)

Internal Examiner:

External Examiner:

Project Coordinator: Dr. Sumaira Kauser (Assistant Professor)

Head of the Department: Dr. Faisal Bashir (Associate Professor)

December 8th, 2017

Abstract

The number of newspapers publishing news stories online has grown in the past few
years. Therefore, preserving news articles for the future is required because of various
reasons including cultural heritage, evidence of activities as well as scientific and historical.
However, the stories may be lost because of the constant change in technologies used
to present and publish. Certain individuals or institutes may be interested to collect
information related to a specific topic or event. The idea came from various research papers
to overcome the need by capturing the stories which are relevant to a topic. Information
is provided to the system through a list of keywords. The tool automatically compares
the keywords after extracting metadata from the articles and automatically identifies the
category of the article and then stores on cloud services.

The tool has the functionality of automatic categorizing the texture data and saving it
on cloud. User can give input as a text file, web link or direct paste it in text box. After
this user may choose to open and read details about an article of their choice.

i

ii

Acknowledgments

First of all, We are grateful to Almighty Allah for his blessings upon us. Who gave us the
ability and courage to complete our project on time. He is the only one who we always
looked at in the event of happiness and trouble and He always helped us in the time of
need. With his blessing upon us we have completed our Work.

We would specially thank to our supervisor Dr. Arif Ur Rahman. Who remained the
source of guidance till the end of this project. He gave us a continuous advice on the
content of the report and project. He gave us too much time to guide each and every
step of this project. We could not achieve the desired results without the guidance of our
supervisor.

We would like to thank our parents who supported us in all our endeavors and saw
successful persons in us.

Last but not the least we would like to thank all our friends whose silent support led us
to complete this task and enjoy the four years stay at the university.

WAJID HUSSAIN

AHMAD RAZA
Islamabad, Pakistan

Dec 2017

iii

iv

“Coming together is a beginning, Keeping together is a progress,
Working together is a Success.”

Henry Ford

v

vi

Contents

Abstract i

1 Introduction 1
1.1 Introduction . 1
1.2 Project Background . 2

1.2.1 AWS CodeCommit . 3
1.2.2 AWS CodeBuild . 3
1.2.3 AWS CodePipeline . 3
1.2.4 AWS CodeDeploy . 3

1.3 Objective . 4
1.4 Problem Description . 4
1.5 Project Scope . 4

2 Literature Review 5
2.1 Digital Preservation . 5
2.2 Natural Language Processing . 6
2.3 Automatic Text Categorization . 7
2.4 Amazon Web Services . 8

2.4.1 Amazon S3 . 8
2.4.2 Amazon S3 Bucket and logs . 9
2.4.3 AWS Lambda . 9
2.4.4 AWS SNS . 10

2.5 Developer’s Work . 10

3 Requirement Specifications 11
3.1 Existing System . 11
3.2 Proposed System . 11
3.3 Product Function . 12

3.3.1 Requirement Specification . 12
3.3.2 System Requirement . 13

3.4 User Scenarios . 13
3.5 Use Cases . 14

3.5.1 Use Case 1 . 14
3.5.2 Use Case 2 . 14

vii

viii CONTENTS

4 Design 15
4.1 System Architecture . 15
4.2 Design Constraints . 15
4.3 Design Methodology . 15
4.4 High Level Design . 18
4.5 Low Level Design . 19
4.6 GUI Design . 21

5 System Implementation 23
5.1 System Architecture . 23
5.2 Tokenization . 23
5.3 Stop Words . 24
5.4 AWS Dynamodb . 24
5.5 API . 25

5.5.1 Json . 25
5.5.2 Jsoup . 25
5.5.3 Scala . 25
5.5.4 NLP . 26
5.5.5 Twinword . 26

5.6 Libraries . 26
5.7 Keyword Extraction . 27
5.8 Automatic Categorization . 27

6 System Testing and Evaluation 29
6.1 Usability Testing . 29

6.1.1 Easy to use . 29
6.1.2 Easy to learn . 29

6.2 Software Performance Testing . 30
6.3 Compatibility Testing . 30
6.4 Exception Handling . 30
6.5 Load Testing . 31
6.6 Stress Testing . 31
6.7 Security Testing . 31
6.8 Installation Testing . 31
6.9 Graphical User Interface Testing . 32

7 Conclusions and Future Work 33
7.1 Conclusion . 33
7.2 Future Work . 33

A User Manual 35

References 37

List of Figures

1.1 AWS-Infrastructure . 2

2.1 Amazon S3 . 9

3.1 Use Case 1 . 14
3.2 Use Case 2 . 14

4.1 System Flow Diagram . 16
4.2 System Flow Diagram of Categorization 17
4.3 High level design . 18
4.4 Low level design . 19
4.5 GUI Design . 21

6.1 GUI Main Window . 32
6.2 GUI choose file or internet link . 32

ix

x LIST OF FIGURES

List of Tables

2.1 Formulas for Digital Preservation . 6

5.1 Common English Stopwords . 24

xi

xii LIST OF TABLES

Acronyms and Abbreviations

ACECS Automatic Categorization of Essays Using Cloud Services
AWS Amazon Web Services
API Application Programming Interface
GUI Graphical User Interface
JSON JavaScript Object Notation
NLP Natural Language Processing
RAKE Rapid Automatic Keyword Extraction
S3 Simple Storage Services
SNS Simple Network Services

xiii

xiv Acronyms and Abbreviations

Chapter 1

Introduction

This chapter describes the introduction of project in detail. It presents the problem
description, project objectives and scope.

1.1 Introduction

Cloud computing has emerged as a new paradigm of computing. It is already in use in
many technologies and companies are developing more and more cloud based solutions
for users [1]. It lets developers focus on solving the core problem while the supporting
services are offered by the cloud service providers. Thus, supporting programmers in
building better solutions. It decreases the costs by helping users choose a payment model
which better suits their individual needs.

The current proposal focuses on the development of an application that gets the data
from one or more sources and stores data on the cloud in a specific format which includes
metadata. The data that is used to represent other data is known as metadata. There
are three different types of metadata: descriptive metadata, structural metadata, and
administrative metadata. The descriptive metadata of an article describes it for purposes
such as discovery and identification. Information such as title, summary, author, and
keywords can be included in the descriptive metadata. The structural metadata of are about
data containers and indicates how composite objects are joined, for example how the pages
are ordered to form chapters. It describes the types, versions, relationships, and other
characteristics of digital materials. The administrative metadata of provide information to
help manage a resource, such as when and how it was created, the type of file and other
technical information, and who can access it. Metadata should have two parts explicit and
implicit. In explicit metadata is already available with an article such author name, date
of publication, source from which a story is downloaded. Implicit metadata is contained
within the text of an article and needs to be extracted to make it explicit.

1

2 Introduction

1.2 Project Background

Earlier the metadata data are stored manually on the machines or computers, the two main
parts of metadata explicit and implicit data are store manually that have some information
like author name, title of the article and table of contents etc. and analyze the data and
identify its category manually which is very hectic and time taking process to identify its
category.

Cloud computing is a strategy for conveying information technology(IT) benefits in
which assets are recovered from the Internet through online devices and applications, rather
than an immediate association with a server. As opposed to keeping records on a restrictive
hard drive or nearby stockpiling gadget, cloud-based capacity makes it conceivable to
spare them to a remote database. For whatever length of time that an electronic gadget
approaches the web, it approaches the information and the software programs to run it.
There are many cloud providers including, Amazon AWS, Google, Microsoft, IBM and
Oracle.

Amazon Web Services is a far reaching, developing distributed computing platform
offered by Amazon.com. Web services are in some cases called cloud services or remote
processing services. AWS is a safe cloud services platform, offering process control,
database storage, content delivery and other functionality to enable organizations to scale
and develop. Investigate millions of customers clients are right now utilizing AWS
cloud items and answers for construct advanced applications with expanded adaptability,
versatility and reliability quality.

Figure 1.1: AWS-Infrastructure

The AWS Developer Tools help you safely store and form control your application’s

1.2 Project Background 3

source code and consequently assemble, test, and convey your application to AWS or your
on-premises condition [2].

1.2.1 AWS CodeCommit

AWS Code Commit is a completely overseen source control benefit that makes it simple for
organizations to have secure and very versatile private Git stores. CodeCommit eliminates
the need to work your own particular source control framework or stress over scaling its
infrastructure. You can utilize CodeCommit to safely store anything from source code to
parallels, and it works flawlessly with your current Git devices.

1.2.2 AWS CodeBuild

AWS CodeBuild is a completely overseen manufacture benefit that gathers source code,
runs tests, and delivers programming bundles that are prepared to convey. With CodeBuild,
you don’t have to arrangement, oversee, and scale your own form servers. Code Build
scales ceaselessly and forms various forms simultaneously, so your manufactures are not
left holding up in a line. You can begin rapidly by utilizing pre-packaged form situations,
or you can make custom form conditions that utilization your own form apparatuses. With
CodeBuild, you are charged incrementally for the register assets you utilize.

1.2.3 AWS CodePipeline

AWS CodePipeline is a persistent coordination and nonstop delivery service for quick and
dependable application and foundation refreshes. CodePipeline assembles, tests, and sends
your code each time there is a code change, in view of the discharge procedure models
you characterize. This empowers you to quickly and dependably convey highlights and
updates. You can without much of a stretch form out a conclusion to-end arrangement by
utilizing our pre-constructed modules for well known outsider administrations like GitHub
or incorporating your own custom modules into any phase of your discharge procedure.
With AWS CodePipeline, you pay for what you utilize. There are no forthright expenses or
long haul responsibilities.

1.2.4 AWS CodeDeploy

AWS CodeDeploy is an administration that mechanizes code organizations to any occur-
rence, including Amazon EC2 cases and cases running on-premises. AWS CodeDeploy
makes it less demanding for you to quickly discharge new highlights, encourages you
maintain a strategic distance from downtime amid application organization, and handles
the many-sided quality of refreshing your applications. You can utilize AWS CodeDeploy
to computerize programming organizations, disposing of the requirement for blunder

4 Introduction

inclined manual operations, and the administration scales with your framework so you can
undoubtedly send to one case or thousands.

1.3 Objective

This application design to help make the system that store the source and other data on
the cloud in a specific format that include some metadata explicitly and implicitly that
consist analysis component which identify its category. Automatic categorization is the
main feature of this application which is done by tokenization.

1.4 Problem Description

Cloud storage is where information is remotely kept up, overseen, and went down. The
administration enables the clients to store records on the web, with the goal that they can
get to them from any area by means of the Internet. But when user want to store the data
on cloud they don’t know what is the actual category of the article which they are saving
on cloud. Automatic Categorization of Essays Using Cloud Services is the software which
collects the texture data from the user and allow them to store it on cloud by detecting
automatically its correct category. The tool will use Amazon S3 service for storing the
data on cloud and use tokenization technique to automatically categorize it.

1.5 Project Scope

Data can be in various formats including text, audio, video, images, and animations. The
focus of the current scope is on Texture data. The texture data serve as some article or
essays or any stories in texture form are only dealing with. Every one of the information
is introduced as writings, expressions, or paragraphs. It includes listing vital attributes,
emphasizing significant figures and identifying important features of data. Textual pre-
sentation information refers to information displayed in composed, paragraph form. He
alternative refers to graphs or other types of visual graphs.

Chapter 2

Literature Review

This project is basically based on an implementation. The review of the literature focuses
on the subject, i-e "Automatic categorization of Essays using cloud services". First,
gathered research papers related to this topic, and then studied each research paper. In
the research papers studied about the work done by the researchers. After reading some
articles, they were only the closest articles to this subject. The main attention has been
to find researchers who work on Cloud and his work. After studying this, analyze Cloud
work and how the data is backed up on the cloud and what security risks are involved.

2.1 Digital Preservation

Digital preservation is a formal endeavor to ensure that digital information of continuing
value remains accessible and usable. Digital content is a combination of files and meta
data. Preservation metadata is a key component of digital preservation. Digital content
includes images, text, sound, videos and maps etc. This requires some identifications
and description captured as metadata. There are different practices for preserve digital
contents. Sound preservation published by sound direction project which describes the
audio preservation work-flow. For digital preservation of text and images there are different
formats which are described in Table 2.1 but over focus is only on texture data available in
a given document. Cloud computing can offer several benefits:

• Cloud flexibility allows emerging service providers to perform relatively fast and
low-cost testing and trial. There are already some of these cloud services pilot
activities and community sharing learning opportunities.

• The deployment of cloud storage services now has more flexibility and more op-
tions than previous years, and is therefore more relevant to archives (see Public,
Community, Private, and Hybrid Clouds).

5

6 Literature Review

• Cost savings can be achieved through easier purchasing and economies of scale,
especially for smaller repositories. In economic pressure, these are important.

• Cloud services can provide simple, automated replication for multiple locations
that are necessary for enterprise recovery planning and professional management of
digital storage access; in addition, experts can increase access to other proprietary
tools, programs, work-flows, and service protocols for digital protection requirements
To build.

Table 2.1: Formulas for Digital Preservation

Still-Images Moving-Image Sound Texture Web-Archive
svg mpeg4 wave nitf arc
tiff avi mp3 xml warc

2.2 Natural Language Processing

Natural Language Processing (NLP) is a domain of computer science which focuses on
the processing of natural languages e.g. English, Urdu, Chinese. The typical tasks in NLP
are tokenization, Lemmatization, named entity recognition, parts of speech identification,
word and sentence boundary identification "The Ultimate Introduction to NLP" [3].
Tokenization is demonstration of separating an arrangement of strings into pieces, for
instance, words, watchwords, expressions, pictures and different components called tokens.
“NLP is a field that covers computer understanding and manipulation of human languages,
and it’s ready with possibilities for news gathering. “Anthony Pesce said in NLP in the
kitchen. You usually cheer about it in the context of analyzing large pools of legislation or
other document sets, attempting to discover patterns or root out corruption."

There are libraries available for NLP. Some of the commonly used ones are:

• Stanford Core NLP1 by using this tool which deal with a human natural language
use to analysis it. Their parts of speech (Noun, verbs, adjective etc.). By using it we
can identify the story contains the company name, person, location etc. how many
stop words are using all these things are captured by this NLP tool. We eliminate
those words which provide any identity of anything. Program automatically extract
the noun phrase and eliminate those words which have like person name, address,
location etc. will be eliminated.

• OpenNLP2 supports the most widely recognized NLP tasks, for example, tokeniza-
tion, sentence division, grammatical feature labeling, named element extraction,

1https://stanfordnlp.github.io/CoreNLP/
2https://opennlp.apache.org/

2.3 Automatic Text Categorization 7

piecing, parsing, language detection and reference resolution. OpenNLP gives a
charge line content, filling in as a special passage point to every single included
instrument. The script is located in the bin directory of OpenNLP binary distribution.
Included are versions for Windows: OpenNlp.bat and Linux or perfect frameworks:
OpenNlp.

• NLTK3 is a main stage for building Python projects to work with human language
data. It gives easy to-utilize interfaces to more than 50 corpora and lexical assets, for
example, WordNet, alongside a suite of content preparing libraries for arrangement,
tokenization, stemming, labeling, parsing, and semantic thinking, wrappers for
modern quality NLP libraries, and a dynamic dialog discussion. NLTK is appropriate
for linguists, engineers, students, instructors, scientists, and industry clients alike.
NLTK is accessible for Windows, Mac OS X, and Linux. The best part is that
NLTK is a free, open source, group driven venture. Natural Language Processing
with Python gives a functional prologue to programming for language processing.
Composed by the makers of NLTK, it manages the reader through the essentials of
composing Python programs, working with corpora, categorizing text, analyzing
linguistic structure, and more.

• Lucene4 is a full-text search library in Java which makes it simple to add seek search
functionality to an application or site "The apache lucene core"[4]. It does as such
by adding substance to a full-content file. It then allows you to perform queries on
this index on this file, returning outcomes positioned by either the significance to
the inquiry or arranged by a subjective field, for example, a record’s last adjusted
date. The substance you add to Lucene can be from different sources, similar to a
SQL/NoSQL database, a file system, or even from sites. Lucene can accomplish
quick inquiry reactions on the grounds that, rather than looking through the content
specifically, it looks through a record. This would be what might as well be called
recovering pages in a book related to a keyword by searching the index at the back
of a book, rather than looking through the words in each page of the book.

2.3 Automatic Text Categorization

Automatic categorization of text data is the core part of this application. Twinword5 API is
used for this purpose in the development of this application. Twinword Propose related
categories for each blog or article. It is Sentiment Analysis’ free API returns sentiment
analysis comes about with score for the given content. Since it allows to discover the

3http://www.nltk.org/
4https://lucene.apache.org/
5https://www.twinword.com/

8 Literature Review

tone of a client remark or post "Automatic keyword extraction from documents based
on multiple content-based measures"[5]. Twinwords Word Associations API gets word
relationship with semantic separation score. Since it expects to work with something other
than just synonyms, clients can get related words of a similar family like "cats" and "dogs."
This API permits to discover equivalent words and related words for single word or a
phrase. It is text analysis API that can understand and relate words similarly as people do.
It first applies tokenization technique on given texture data and extract keywords from it.
After extraction of keywords Twinword compare them with other related articles. Then
after analyzing the data it place the article in its correct category.

2.4 Amazon Web Services

Amazon Web Services (AWS) is a comprehensive, evolving cloud computing platform pro-
vided by Amazon Web services are sometimes called cloud services or remote computing
services. The first AWS offerings were launched in 2006 to provide online services for
websites and client-side applications "Programming Amazon Web Services: S3, EC2,
SQS, FPS, and SimpleDB " [2].

• AWS offers a huge range of services to suits your application requirements.These
database services are fully managed, just a few minutes to start in a few minutes. AWS
database services include Amazon RDS, support for six popular database engines,
Amazon Aurora, MySQL and PostgreSQL-compliant data, Amazon Dynamo Db,
NoSQL database services fast and flexible, Amazon’s Redshift data warehouse
service and Amazon Elasticache , Memory cache service, support for Memcached
and Redis. AWS also provides the AWS database migration service, which makes it
easy and cheap to migrate your database to the AWS cloud "Programming Amazon
Web Services: S3, EC2, SQS, FPS, and SimpleDB " [2].

• Amazon Web Services (AWS) is a secure cloud services platform that offers comput-
ing power, database storage, content delivery, and other features to help businesses
scale and grow

2.4.1 Amazon S3

Amazon Simple Storage Service is storage for the Internet. It is designed to make web-
scale computing easier for developers. Amazon S3 has a simple web services interface that
you can use to store and retrieve any amount of data, at any time, from anywhere on the
web. It gives any developer access to the same highly scalable, reliable, fast, inexpensive
data storage infrastructure that Amazon uses to run its own global network of web sites.
The service aims to maximize benefits of scale and to pass those benefits on to developers

2.4 Amazon Web Services 9

"Programming Amazon Web Services: S3, EC2, SQS, FPS, and SimpleDB " [2].
Companies today need the ability to simply and securely collect, store, and analyze their
data at a massive scale. Amazon S3 is object storage built to store and retrieve any amount
of data from anywhere – web sites and mobile apps, corporate applications, and data from
Internet of things (IoT) sensors or devices. It is designed to deliver one percent durability,
and stores data for millions of applications used by market leaders in every industry. S3
provides comprehensive security and compliance capabilities that meet even the most
stringent regulatory requirements. It gives customers flexibility in the way they manage
data for cost optimization, access control, and compliance. S3 is the only cloud storage
solution with query-in-place functionality, allowing you to run powerful analytic directly
on your data at rest in S3.

Figure 2.1: Amazon S3

2.4.2 Amazon S3 Bucket and logs

Amazon S3 integrates with Cloud Trail, which captures specific Amazon S3 API calls
from its AWS account and passes the log file to your designated Amazon S3 bay. Cloud
Trail captures API calls made by Amazon S3 or Amazon S3 APIs.

2.4.3 AWS Lambda

AWS Lambda starts the code only when it’s needed and automatically scales from sev-
eral requests per day to thousands per second. You pay only for the calculated time of
consumption - there is no charge when the code is not running. With AWS Lambda, you
can run code for virtually any type of application or backend - all at zero administration.
AWS Lambda runs its code in a high-availability computing infrastructure and performs all
administration of computing resources, including server and operating system maintenance,

10 Literature Review

capacity and automatic scaling, code monitoring, and logging. Just enter the code in one of
the languages supported by AWS Lambda (currently Node.js, Java, C sharp and Python).

2.4.4 AWS SNS

AWS SNS is a Web service that is used to coordinate and manage the sending or sending
of messages to or from a registered user. In Amazon SNS, there are two types of clients
- publishers and subscribers - also known as producers and consumers. The editor com-
municates with the user asynchronously by generating and sending a message to the user,
which is a logical access point and a communication channel. Subscribers (ie Web server,
email address, Amazon SQS queue, AWS Lambda function) consume or receive messages
or notifications on one of the supported protocols (c’ie Amazon SQS, HTTP / S, email,
SMS, Lambda) To the subject.

2.5 Developer’s Work

After reading these research papers, it was finally decided to do this semester project.
Automatically classify the tests and divide the metadata into explicit and implicit. We
developed this application in the JAVA programming language using Eclipse IDE.

Chapter 3

Requirement Specifications

This chapter presents a review of existing systems and establishes requirements specifica-
tions for the proposed tool.

3.1 Existing System

An open format is established by Amazon for storing data on cloud known as Amazon
S3 service. Amazon S3 is cloud storage for the Internet. To upload your information
(photographs, recordings, reports and so forth.), you initially make a bucket in one of the
AWS Regions. You would then be able to transfer any number of items to the bucket. As far
as execution, buckets and objects are assets, and Amazon S3 gives APIs to you to manage
them. For instance, you can make a bucket and upload objects utilizing the Amazon S3
API. You can likewise utilize the Amazon S3 console to perform these operations. The
console inside utilization the Amazon S3 APIs to send requests to Amazon S3. Amazon
S3 bucket names are all around special, regardless of the AWS Region in which you make
the bucket. You determine the name at the time you make the bucket. AWS Lambda is a
compute service that gives you a chance to run code without provisioning or managing
servers. AWS Lambda executes your code just when required and scales naturally, from a
couple of requests for every day to thousands every second.

3.2 Proposed System

The main purpose of this project is to store the data on cloud by creating a bucket using S3
service of AWS and automatically categories the data stored in bucket after splitting the
metadata in explicit and implicit parts. In this project we use these following technologies:

• JAVA

11

12 Requirement Specifications

• Eclipse IDE

• AWS Dynamodb

• AWS S3

• AWS Lambda

with following key feature:

1. Accurate result

2. User friendly

To store and automatic categories the text file use JAVA application to create a form in
which user select specific file from the personnel system or can cut paste the text in the text
bar. This project is basically focus on automatically categories the essays and their storing
on cloud. From users point of view, if they don’t want to read the complete article or essay
to define its category than they can use this application for automatic categorization.

3.3 Product Function

• User can browse by clicking on browse button and can select the file from personal
system.

• User can cut paste the text in the text file wants to automatic categories.

3.3.1 Requirement Specification

• User specification of the system which can have a contact with system directly or
indirectly are identified below.

• Developer who have complete control of all aspects of his application. Any time he
makes changes in application like update or change visual interaction.

• Technical user who have full command on databases and cloud computing and uses
of other programmed applications. This is naive user of application.

• Non-Technical user are end users who don’t know anything about cloud computing
and databases and only wants to automatic categories the articles and their storing on
cloud.

3.4 User Scenarios 13

3.3.2 System Requirement

1. Functional Requirements

(a) Support large text files.

(b) Select the file from personal system or cut paste text in text bar.

(c) Only for text files (only focus on textual data).

(d) Connected with cloud.

2. Non-Functional Requirements

(a) Usability: - Automatic categorize the articles and store it on cloud efficiently.

(b) Performance: - This tool automatic categorize the article and store it on cloud
in its correct category in less than 5 second.

(c) Capacity: - Application have a read, write capacity and can store almost 1000
articles.

(d) Operations: - By using this software user can view different articles save on
cloud as well as automatic categorize them.

(e) Security: - Articles which user automatic categorize and store on cloud by
using this tool cannot be view by any other person.

(f) Attractive layout: - Application layout is self-explanatory user can understand
it easily.

3.4 User Scenarios

Deliver a summary of the main purposes that the system will execute. Establish the
purposes to be comprehensible to users. User scenario of this application:

• The user who want to use this application have internet connection.

• User install ACECS application.

• First user agree the licensee and key terms ACECS of application.

• After agreed user will able to install ACECS.

• After this user run the application and select specific file from directory or by name.

• After chose the file ACECS automatic categories the article or essay and store it on
cloud.

• When a user wants to close the application the message will display "Do you really
want to close the application?" Yes or No

14 Requirement Specifications

3.5 Use Cases

3.5.1 Use Case 1

USER

Autometic Categorization of Essays

Figure 3.1: Use Case 1

User can easily automatic categorize the essays by applying one of following three
methods in figure 3.1.

• By giving the link of website.

• By choosing the file containing texture data.

• Direct paste the texture data in the textbox. After taking the input system extract the
keywords and match them with other related articles. After this application place the
article in its correct category.

3.5.2 Use Case 2

USER

View and Read Already
Categorize and Store Essays

Figure 3.2: Use Case 2

Use Case 2 as presented in figure 3.2 shows that user can easily access the articles from
the home page of application after storing articles on cloud. Users can read the articles
which are stored in different categories. This function gives easy accessibility of data.

Chapter 4

Design

This chapter presents the system design and the functionality of the software developed.
Moreover, the type of data which will be used as input, the various modules and graphical
user interface (GUI) of the system are presented.

4.1 System Architecture

The Architecture of this system is interactive and simple. It provide user friendly interface
which contains a different websites links user can select the different links by using web
crawling. The high level diagram of this system as shown in the 4.3 and the Flow diagram
of the given system as shown in 4.4. In which it display how the system performs its task
step by step.

4.2 Design Constraints

1. Internet facility must be available.

2. Targeted users are educated enough to operate a computer and understand the system
as well as the application to be perform.

4.3 Design Methodology

Using incremental model [6],The incremental process model is a process of software
development where the product is designed, implemented and tested incrementally. At
each increment a new and little more things or feedback is added until the product is to be
develop. It includes both maintenance and development. When all the requirement is to be
done then product is said to be finished. This model comprises the elements of both the

15

16 Design

Figure 4.1: System Flow Diagram

User Input
(Texture Data)

Tokonization

Extract Metadata

Match Keywords

CategorizeIgnore

Exit

Show Story

Automatic
Categorize

False True

waterfall model and Iterative idea of prototyping. Incremental model was used to develop
the software. The goals of the project were achieved in the following four phases.

• Take texture data as an input from textbox or file.

• Extract Meta data from the given data for example publish date, publisher name, title
of article etc.

• Apply tokenization technique and match keywords.

• Automatic categorize the texture data. The flow diagram of automatic categorization
is in figure 4.2.

4.3 Design Methodology 17

Figure 4.2: System Flow Diagram of Categorization

User Input
(Texture Data)

Extract Metadata

Match Keywords

Categorize

Exit

Save on Cloud

False

18 Design

4.4 High Level Design

Figure 4.3: High level design

User Input
(Texture Data)

Tokonization

Match Keywords

Automatic Categorization

Save on Cloud
(Bucket)

INPUTS

Texture Data

PROCESS OUTPUTS

Story Display on Screen

Tree Data Structure

High level diagram which shown in 4.3. In which user will input the link where he/she
want to extract the story. Then after selection it will move to the processing part where
it process the link accordingly. Then after being process it will display the output score
result of comparison.

4.5 Low Level Design 19

4.5 Low Level Design

User Input
(Texture Data)

Tokonization

Match Keywords

Automatic Categorization

Save on Cloud
(Bucket)

PROCESS

Tree Data Structure

Figure 4.4: Low level design

This diagram shows the processing part of the application. From the first part where we
obtain the texture data in the form of text file, web links by using Jsoup API which can
copy all the text from the website and paste it into the text file Which shown in the 4.4
and 4.3. process will make a tree of words by using tokenization of words which was
extracted from the site.After tokenization application automatically categorized the articles
by using twinword api and save it on cloud. After this User can view the categorized
articles on Home page of the application.4.2 explains the categorization process of the
application.System take an input in the form texture data.Extract the metadata and apply
tokenization technique. Match the extracted keyword with other related articles, categorize
it and save it on cloud by using Amazon Dynamodb service.

20 Design

4.6 GUI Design 21

4.6 GUI Design

Figure 4.5: GUI Design

22 Design

The Graphical user interface of this application is simple and consistent because it is used
for general user easy to understand and easy to analysis the steps taken by the application.
User will easily identify which button will perform which action easily. GUI design which
is meant to be look like is shown in 4.5. In this we have three windows:

• In first windows there is three buttons user will click Home button to view different
articles store on cloud and can click Customize button for automatically categorizing
some texture data. For closing the application user can click Exit button.

• In second window user can select a file from the computer by clicking on browse
button can choose a link by using radio buttons as well as texture data. User can
extract Meta data and publish the article on cloud by using this window.

• In third window there is a text box where user can paste the texture data and after
this when user clicks on publish button data will automatically store on cloud in its
correct category.

Chapter 5

System Implementation

Implementation is the process of putting a decision or plan into reality, effect or in execution.
This chapter describe techniques and software components which are perform to develop
this project into execution.

5.1 System Architecture

The system Architecture of this application is generic can be applicable to any text file
which is user input. We just need to extract metadata and apply tokenization on given input
and match the keywords. Then after analyzing the texture data will automatically store on
cloud in its correct category. Application uses the components, tools and techniques of
java language. In which all the built-in Libraries and API’s are used. Tools and techniques
which are used in this Project for example Extract metadata, Tokenization, Keywords
Extraction, Automatic categorization, Stopwords and Cloud Storage, Stanford Core NLP
tools, AWS Dynamodb, API (Scala,Twinword).

5.2 Tokenization

Tokenization is the demonstration of separating an arrangement of strings into pieces,
for example, words, watchwords, expressions, images and different components called
tokens. Tokens can be singular words, expresses or even entire sentences. During the time
spent tokenization, a few characters like punctuation marks are disposed of. We use this
technique in which sentence are chopped into chunk of words and now each word is deal
with 1 token and throw away certain characters like punctuation etc. Token is a sequence
of characters from a specific document join to make a semantic unit of processing.

23

24 System Implementation

5.3 Stop Words

Stopwords will be words which are filtered through earlier or after processing to natural
language data. We eliminate Stop words mention in a table A.1 from our story by utilizing
Core NLP tool in light of the fact that these words give additional data or may be some
may be sometime they provide unnecessary information which may cause story out of
there limit so by utilizing the tool NLP we wipe out these sorts of words and makes our
story to the point.

Table 5.1: Common English Stopwords

a into don’t she’d she’ll about she’s
down wasn’t we above we’d is we’ll
isn’t during after each few should she
again it its it’s were in was
against for shouldn’t we’re so what’s weren’t
all we’ve itself further i’ve such from
am me let’s than what that some
an more has when that’s hadn’t had
and hasn’t the most when’s only herself
any mustn’t have where their hers once
are haven’t theirs my where’s hers once
aren’t myself having which them hers once
as he no themselves while why’s they
at nor he’d who then on here’s
be he’ll not there whom these why
because of her who’s there’s here off
been he’s or they’re would won’t they’ll
before other him wouldn’t they’ve you this
being himself ought our his those you’d
below how ours you’ll through to your
between i out you’re too ourselves how’s
both over i’d under yours you’ve shan’t
but if own yourself until i’m very
by same i’ll up yourselves do does
cannot can’t could couldn’t doing did didn’t

5.4 AWS Dynamodb

Amazon DynamoDB - [2] otherwise called Dynamo Database or DDB - is a completely
overseen NoSQL database benefit gave by Amazon Web Services. DynamoDB is known
for low latencies and versatility. Amazon DynamoDB is a completely managed NoSQL
database benefit that gives quick and unsurprising execution with consistent adaptability.
DynamoDB gives you a chance to offload the regulatory weights of working and scaling a

5.5 API 25

distributed database, with the goal that you don’t need to stress over equipment provision-
ing, setup and design, replication, software fixing, or cluster scaling. With DynamoDB,
we make database tables that can store and recover any measure of information, and
serve any level of demand movement. We scale up or downsize our tables’ throughput
limit without downtime or performance degradation, and utilize the AWS Management
Console to monitor resource utilization and performance metrics. By using DynamoDB
we erase expired things from tables automatically to decrease storage usage and the cost of
cost of storing data that is never again applicable. DynamoDB automatically spreads the
information and traffic for our tables over a sufficient number of servers to deal with your
throughput and storage requirements, while keeping up reliable and quick execution. All
of our data is stored on solid state disks (SSDs) and naturally duplicated over numerous
Availability Zones in an AWS area, giving implicit high accessibility and information
strength.

5.5 API

The following APIs are used in the project.

5.5.1 Json

Json is a (JavaScript object notation) java API use in our project. This API is an open-
standard format use human understandable text use to spread data consisting of values and
attributes. This is basically how the program is interacting with the human.

5.5.2 Jsoup

Jsoup is a java library use to work with the HTML [7]. Jsoup is use in our project to extract
all the data or story from the News story website and store it in a system or a file system.
All the content like heading, hrefs, paragraph will be extracted and create a copy of that
story in a system files.

5.5.3 Scala

Scala java API is use in our project. This API is use for the extraction of metadata from
the given texture data as an input. It is use for web scraping and it’s another extension of
java scala is basically for data extraction from web links it parse the complete html page
and fetch the data according to our requirements like an article extractor in our application
or default web page extractor. It removes all the tags of html page and parse the specific
story or article that we are interested for.

26 System Implementation

5.5.4 NLP

NLP (Natural Language Processing) is use in our project for tokenization. Tokenization
is demonstration of separating an arrangement of strings into pieces, for instance, words,
watchwords, expressions, pictures and different components called tokens.

5.5.5 Twinword

Twinword API is use in our project for automatic categorization of texture data. Twinword
is text analysis API that can understand and relate words similarly as people do. It attracts
the key words from the given data and after analyzing it suggest the correct category of the
article.

5.6 Libraries

The following libraries are used in the project.

1. aws-java-sdk 1.11.218v

2. commons-io 2.6v

3. httpclient 4.5.3v

4. httpcore 4.4.8v

5. ion-java 1.0.3v

6. jackson-all 1.9.0v

7. joda-time 2.9.9v

8. jsoup 1.10.3v

9. org.eclipse.jface 3.13.1v

10. org.eclipse.jface.text 3.12.0v

11. org.eclipse.text 3.6.100v

12. org.eclipse.ui.forms 3.7.101v

13. org.eclipse.ui.workbench 3.110.1v

14. org.eclipse.osgi 3.12.50v

15. org.eclipse.swt.win32.win32.x86-64 3.6.100v

5.7 Keyword Extraction 27

5.7 Keyword Extraction

We read different articles related with same topic for example cricket match there are quite
similar words like player, bowler, keeper etc. When we provide article related with cricket
to this application it will automatically place it in sports category on cloud by matching
keywords use in the given article and use in related articles [5]. Twinword API is used for
keyword extraction in our application and suggesting its correct category.

5.8 Automatic Categorization

We have created a publish option in the application by using this user can automatically
categorize the texture data which is provided to this application as an input [5]. It is done
by matching the keywords extracted from the input article and compare it with the quite
similar articles. Then after the automatic categorization data is store on cloud in its correct
category. For this purpose application use AWS DynamodB service. Amazon DynamoDB
is a completely managed NoSQL database benefit that gives quick and unsurprising
execution with consistent adaptability.

28 System Implementation

Chapter 6

System Testing and Evaluation

In this Chapter different testing systems are used for assessment and validation of this
application. Testing plays an important role in the product software development process.
It helps to validate the system will meet its requirements and the working of the application.
Every project has few constraints and these constraints will be investigated during the test
cases which are talk about in this chapter.

6.1 Usability Testing

Usability testing gives the information about how much time will it require performing a
specific task of the system. Usability testing is assessed by the target audience group of the
application. In our application, our audience is general Users. This application is use for
automatic categorization of texture data and storing it on cloud. Usability testing tells that
the system is performing the tasks that it is planned to do or, on the other hand not. The
application performs the task the client want to perform from the application or not [8].

6.1.1 Easy to use

This project is easy to use and project is self-explanatory that the user can easily Interpret
what the system is intend to do.

6.1.2 Easy to learn

Our system is very simple basic and consistent, visible and clear. The system is very easy
to learn for the new users. It has very simple and easy GUI and self-explanatory new user
can easily understand it.

29

30 System Testing and Evaluation

6.2 Software Performance Testing

Software performance testing use to check how efficiently the system performs the task
through this application. This will help us to determine the system capability, reliability
and efficiency. Following steps were taken to increase the application performance.

• Comparison between keywords extracted from the texture data given by the user
and other related articles is done on the run time before suggesting its category will
increase the speed and consume less time.

• If there is no matching between the keywords extracted from article with any other
article it will simply not suggest any category in suggested category box.

• System will not take or waste time to extract or checking the videos and images
because they are not relevant for system.

• System will take some time 1 to 2 minutes for automatic categorization of given
content and storing it on cloud.

6.3 Compatibility Testing

Compatibility Testing is a kind of non-functional testing. Compatibility implies on what
conditions the system will perform well with no issues. This testing technique will help us
to know the compatibility with which hardware and software resources need to use this
application. Following are the compatibility feature should be having:

• Processor must be quick reason it performs to many processes to be taken so process-
ing must be fast for example core i3 or more and RAM 4 GB.

• This application is developed on the Java. So, system must have the JDK platforms
to run this type of application.

• This application is cloud based. So, user must have strong internet connection.

6.4 Exception Handling

In this system there are many exceptions are to be handle.

• HTTP exception case show if there is any issue regarding the internet connection
exception will be shown.

• Exception will be displayed if the user input is not text related file for example some
jpg file.

• Time out Socket exception is there as well.

6.5 Load Testing 31

6.5 Load Testing

Load testing is the way toward putting request on a software system or registering gadget
and measuring its reaction. Load testing is performed to determine a system’s behavior
under both normal and anticipated peak load conditions. Load testing is that to test the
framework under the strange circumstance applying stress to a software and decide the
behavior of the system under this kind of circumstance. In this system stress may apply
when Internet connection is disconnected over and over it will apply too much load on
a system. In other case when a given article is too large it will too long to compare the
keywords and automatic categorizing it. And the last thing is when the processing speed is
slow then it applies all the load on the processor it will slow down the speed and consume
lots of the time.

6.6 Stress Testing

Stress testing is a type of software testing that is utilized to decide the stability of a given
framework. It put more prominent accentuation on heartiness, accessibility, and mistake
dealing with under a substantial load, as opposed to on what might be viewed as right
conduct under typical conditions. We apply stress test to our application by categorization
on about 500 articles. The application successfully performs the automatic categorization
on them it took about 20 seconds to complete its automatic categorization of each file.

6.7 Security Testing

Security testing is a procedure expected to uncover imperfections in the security instru-
ments of a data framework that ensure information. Ordinary security prerequisites may
incorporate particular components of privacy, authentication, verification, accessibility,
approval and non-repudiation. As over system automatic categorize the texture data and
this data can be extracted from the authorized news websites where security is their priority.
Our Application not categorize and display those types of data which will break the security
terms and condition. No one can misuse this type of data.

6.8 Installation Testing

Installation testing refers to the testing of installation of the application. To run the project,
there must be the Microsoft operating system installed in the system. This project is
developing on Java. In this way, system must have JDK platform and java platforms. These
things must need to run this sort of application.

32 System Testing and Evaluation

Figure 6.1: GUI Main Window

6.9 Graphical User Interface Testing

Figure 6.2: GUI choose file or internet link

As shown in the Figur 6.2 6.1 where the Graphical user interface is displayed. GUI is
developed in such a way that it is remain consistent in all the processes made by the
application. The user interface of our system is self-explanatory. Our system contains tabs,
radio buttons, text box etc. All things perform accurately. From one window user can
select the file from personal computer and second one is use for pasting the texture data in
the textbox which user want to automatically categorize. The test on textbox in second
window is successful user can enter multiple words in it.

Chapter 7

Conclusions and Future Work

7.1 Conclusion

This project is all about to take texture data as an input and automatically categorize the
text and store it on cloud. User can save their files on cloud after automatic categorizing
which is very easily accessible from anywhere when strong internet connection is available.
User can direct paste the content in the textbox and can also select the file from the hard
drive. This application is cloud based that’s why user must have internet connection to run
this application. It is very hard manually to read long and large number of articles first
and then decide their correct category. And after manually categorizing it’s even hard to
store the files on cloud. By using this application user can automatically categorize the
texture data and store it on cloud in its correct category which can reduce the time and
complexity as well. The main method is used in this algorithm to divide the problem in to
small chunks and overcome those problems to address the main issue. So that’s why, we
divide the text into sentences or in the form of words and compare the extracted key words
with the other related articles. After comparing we suggest the correct category of the
article given by the user to this application. We made table of categories on cloud by using
the Amazon Web Services account and store different articles in their correct category in
the table. We almost give 500 articles to this application for automatic categorization and
store them on cloud and this application successfully done its task.

7.2 Future Work

• The focus of this application is only on the texture data given to it. In future we will
further expand this application, so it will also categorize other formats like videos,
images etc.

• This application only analyzing the texture data and after extracting the keywords
compare it with other related articles but in future after expanding this application

33

34 Conclusions and Future Work

will also automatic categorize the videos after separating different frames of data
given to it and will compare it with other related videos.

• In further we can create a graph for it. So user can see how much articles save on
cloud in each category.

• We can also give a user summary of the article which he/her automatic categorize
and store it on cloud by using this application. It will save the time of user of reading
a long article.

Appendix A

User Manual

ACECS is user friendly software which is helpful for automatic categorizing the texture
data and storing it on cloud for technical users and also for non-technical users.

• Run ACECS directly.

• Main window will pop up which have two main buttons Home and Customize.

• Select the customize button for categorizing the texture data.

• Select browse button for selecting the texture file directly from the computer hard
disk.

• If user want to extract the data from the website he/she can give the link by clicking
on link button.

• Option of Direct copy paste the texture data in textbox is also available for the user.

• When data is loaded click on categorize button for automatic categorizing the data
and storing it on cloud.

• When data is loaded click on categorize button for automatic categorizing the data
and storing it on cloud.

• View different categorized texture data by selecting the Home button from Main
window.

• Click on specific category to view the articles store in it.

• Click on exit button to close the application.

35

36 User Manual

References

[1] Latanya Sweeney. K-anonymity: A model for protecting privacy. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., 10(5):557–570, October 2002. Cited on p. 1.

[2] James Murty. Programming Amazon Web Services: S3, EC2, SQS, FPS, and Sim-
pleDB, pages 1–27. O’Reilly Media; 1 edition, 2008. Cited on pp. 3, 8, 9,
and 24.

[3] Owen Fitzpatrick Richard Bandler, Roberti. The Ultimate Introduction to NLP: How
to build a successful life, chapter chap 2, pages 5–10. HarperCollins; Reprint edition
(January 3, 2013), March 19, 2013. Cited on p. 6.

[4] Apache Software Foundation. The apache lucene core. 18 October 2017. Cited on
p. 7.

[5] Kun Yue, Wei-Yi Liu, and Li-Ping Zhou. Automatic keyword extraction from doc-
uments based on multiple content-based measures. Computer Systems Science and
Engineering, 26(2):133, 2011. Cited on pp. 8 and 27.

[6] Dapeng Liu. SERA ’11 Proceedings of the 2011 Ninth International Conference
on Software Engineering Research, Management and Applications, chapter chap 4.
2011-08-10. Cited on p. 15.

[7] Pete Houston. Instant Jsoup How-To, chapter 5, page 26. Packt Publishing, 2013.
Cited on p. 25.

[8] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold; 2 edition, (June
1990). Cited on p. 29.

37

38 REFERENCES

	Front Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 Project Background
	1.2.1 AWS CodeCommit
	1.2.2 AWS CodeBuild
	1.2.3 AWS CodePipeline
	1.2.4 AWS CodeDeploy

	1.3 Objective
	1.4 Problem Description
	1.5 Project Scope

	2 Literature Review
	2.1 Digital Preservation
	2.2 Natural Language Processing
	2.3 Automatic Text Categorization
	2.4 Amazon Web Services
	2.4.1 Amazon S3
	2.4.2 Amazon S3 Bucket and logs
	2.4.3 AWS Lambda
	2.4.4 AWS SNS

	2.5 Developer's Work

	3 Requirement Specifications
	3.1 Existing System
	3.2 Proposed System
	3.3 Product Function
	3.3.1 Requirement Specification
	3.3.2 System Requirement

	3.4 User Scenarios
	3.5 Use Cases
	3.5.1 Use Case 1
	3.5.2 Use Case 2

	4 Design
	4.1 System Architecture
	4.2 Design Constraints
	4.3 Design Methodology
	4.4 High Level Design
	4.5 Low Level Design
	4.6 GUI Design

	5 System Implementation
	5.1 System Architecture
	5.2 Tokenization
	5.3 Stop Words
	5.4 AWS Dynamodb
	5.5 API
	5.5.1 Json
	5.5.2 Jsoup
	5.5.3 Scala
	5.5.4 NLP
	5.5.5 Twinword

	5.6 Libraries
	5.7 Keyword Extraction
	5.8 Automatic Categorization

	6 System Testing and Evaluation
	6.1 Usability Testing
	6.1.1 Easy to use
	6.1.2 Easy to learn

	6.2 Software Performance Testing
	6.3 Compatibility Testing
	6.4 Exception Handling
	6.5 Load Testing
	6.6 Stress Testing
	6.7 Security Testing
	6.8 Installation Testing
	6.9 Graphical User Interface Testing

	7 Conclusions and Future Work
	7.1 Conclusion
	7.2 Future Work

	A User Manual
	References

