UNIy,
Rl S
Y 3.
&)P ki g

S

FATEH SHEHRYAR
01-134131-025
ASFANDYAR SHAKEEL
01-134131-014

Maverick

Bachelor of Science in Computer Science
Supervisor: Dr. Sabina Akhtar

Department of Computer Science
Bahria University, Islamabad

May 2017

(© Fateh Shehryar, 2017

Certificate

We accept the work contained in the report titled “Maverick”, written by Fateh Shehryar
AND Asfandyar Shakeel as a confirmation to the required standard for the partial fulfillment
of the degree of Bachelors of Science in Computer Science.

Approved by ...:

Supervisor:

Internal Examiner:

External Examiner:

Project Coordinator:

Head of the Department:

Abstract

The report discusses the use of different tools such as blender, Unity, C etc. and to how the
tools will manage to provide the required output (game) for instance blender was used as it
has a constructive workflow that is any mesh you use can be altered easily (you can change
the number of vertices by using modifiers) which other tools like maya don’t provide.
Photoshop is used when simple textures were needed (without the mapping) and a tool
named crazybump helped generating the different maps for the textures used. Furthermore
the game focuses on design and efficient programming making the game user friendly. The
objective for choosing a game project was to gain experience in computer graphics so in
future the team can contribute to the computer graphics society of Pakistan by having a
portal where people will be allowed to submit similar projects and ideas; also to use our
experience to motivate others to pursue their passion in the computer graphics discipline.

Contents

1 Introduction
1.1 Project Background/Overview
1.2 Problem Description
1.3 Objectives o i e e
1.4 Project Scope e

2 Literature Review

3 Requirement Specifications
3.1 Existing System e
3.2 Proposed System
3.3 Requirement Specification
34 UseCase o i i

4 Design
4.1 ClassDiagrams
4.2 System Architecture oL
4.3 Basic Flow of the Class Diagram between assets
4.4 DesignConstraint Lo

5 System Implementation
5.1 System Architecture

6 System Testing and Evaluation

7 Conclusions
7.1 Future Enhancements

References

1

ot

\S]

23

26
26

27

List of Figures

3.1
3.2
33

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

Use Case: Console i 6
Use Case: Al Functionalities 7
Use Case: AdminPanel 7
ATASset e 9
Camera ASset e 10
Effect Asset e 11
HUD Asset o e 12
Items Asset L 13
Objects ASSEt o i e e e e e 14
Player Asset e 15
Weapons ASset e e 16
System Architecture 17
Basic Asset Diagram L L Lo 18
Image shows the use of PBR,etal (used formetalobjects) 19
Image shows the use of PBRjielectric 20
Images show the use of both PBR,,etalaswellasPBRgielectric 20
Using maps for the main body forthe ak 47 21
Using maps for the recoil of the ak 47 (the metal part) 21

il

List of Tables

3.1
3.2
33

6.1
6.2
6.3
6.4
6.5

Use Case:
Use Case:
Use Case:

Test Case:
Test Case:
Test Case:
Test Case:
Test Case:

Console Specificaion Table 6
Al Functionalities Specificaion Table 7
Console Specificaion Table 7
Artificial Intelligence 1o 24
Artificial Intelligence 2o 24
Weaponl 24
Weapon2 24
Basics 25

v

Chapter 1

Introduction

1.1 Project Background/Overview

This project is a first person shooter game built on the gaming engine (Unity). It is a
windows based application (game). The game focuses on design and efficient programming
making the game user friendly, with realistic and interactive environment. The two
members mentioned above have worked on the project with the help and support of their
supervisor. The team faced risk (calculated and uncalculated), the risks included the
reliance on external code (found on the net). Management was another risk but the team
handled it well by creating a work breakdown structure and defining the ultimate scope of
the project in the initial stages. Also extra work was efficiently removed by hand drawing
the interfaces and critically analyzing the interfaces for improved version.

1.2 Problem Description

Levels in today games are static designed by a level designer, due to this these some games
fail to keep the players interested to the end. We want to tackle this issue by generating
the game levels procedurally (in future). Procedural level generation allows the coder
to generate a random level at the end of every level. Each level is different and you can
generate infinite many levels and still make them look different. Moreover as the storyline
will revolve around a Pakistani family, which will promote our culture and help improve
Pakistan’simage globally. By making this game we further want to strengthen the Pakistani
game industry and to encourage others to do the same. The game has the following main
assets (subfolders) that can be manipulated (have C-Sharp functions which are performed
according to the situation in the game) while in runtime, these are the player characters

and are as following:

Introduction 2

Camera

Weapons

Player

Effects

e HUD

Items

o Al

Objects

These objects function on the terrain through scripts and manipulation of Unity’s [1]
physics components. These assets fall under the Unity’s behavior manager. The NPC’s
involve mathematics and physics are focus on how much damage does the target take based
on where the target is hit etc. Some of these character are however interactive while the
others do not impact the player what so ever.

1.3 Objectives

To design a highly interactive 3D shooter game, with graphics good enough to compete in
the market and to take Pakistani game industry to its height. Moreover it is to add in the
experience for further development of better game in the near future and to have a better
understanding of different tools and techniques.

1.4 Project Scope

The game is made using the popular Unity 3D gaming engine. Unity allows you to
write code either in JavaScript or C-sharp [2]. The project uses C-sharp scripts due to its
robustness and also as we have experience in it. While Unity will handle all the physical
aspects of game from bringing everything together to the end product, blender [3] and
photoshop were used for 3D modeling and texturing of the game. 3D models will be made
using Blender. Photoshop was used for texturing these assets and for Ul design.

Chapter 2

Literature Review

There are a few basics step to making a first person shooter game that you need to follow
(may it be in unity or any other gaming engine). First and foremost (if needed) you have to
get user requirements for additional information and as this was a game, hence it asked for
not just one user’s information rather a survey. The survey helped as the users, from the
past experience, explained what they would like to see in a first person shooter game and
what bugged them in the previous first person shooter games. The second phase is where
you hand draw (just to have a vague idea) the terrain/terrains of the project and things like
how to main characters/items will look like. This will provide you with the idea of what
you need to focus on the most and when to implement what phase of the project. Render
time for an object is most important in the sense that if it takes too long for objects to
render then game would not appeal to the user due to the laggy circumstances. Having the
idea of how to want the game to be played, these blue prints/hand drawings will help in the
rendering process as you will be able to know what parts of the objects need the rendering
process and what parts of the objects won’t need rendering as they won’t be visible to the
user in the game time hence rendering them will only result in heavier requirements for the
game to be played. Rendering can also be reduced by the help of different techniques one
of them used in the project is handling of the polygon count. This depends on what object
and what part of the object is important for its recognition, the parts which aren’t that
important don’t require many polygons hence improving the render time. Other techniques
involve using of textures [4] instead of models and looping a certain texture. The work
schedules start after the hand drawing the interfaces etc. where you need to implement
the scripts and work on the designs (interfaces). The interfaces comprise of assets. An
important thing while creating objects is that you need to focus on the hierarchy of the
objects and which objects falls under which parent object. A common mistake made while
creating items in the hierarchy is creating multiple items with the same name, this results

Literature Review 4

in error when working on the scripts as the items are referred in the scripts, and if such
errors are not detected in the earlier stages then it might cause major problems in later
stages as coordination is affected. As working with Unity you also have to be aware of
the glitches in the Unity environment, that are, bugs related to the physical aspects of
the game. Unity works in a perfect environment initially where there isn’t much physics
implemented, for instance to add gravitational affects you need to add it’s physics to the
object and even after adding gravity there is no friction or any other force applied to the
object other than gravity, in other words if you rotate the object to a 45 degree angle and
click the play button the object will simple fall at the 45 degree angle and will stay in that
angle even after hitting the ground. Hence being aware of the glitches in the gaming engine
helps you process the game a lot better as you are aware of what physical aspects needs to
added where and when. Another thing with Unity is that the developers needs to know
that Unity is not a modeling tool, that is you need to model everything yourself in order
to make them look realistic etc. As for the modeling phase the model you are to design
should usually be of a higher quality as you might need to change the scale of the original
model. If the model isn’t of a higher quality and you scale the model to a larger size as
that of the original model then its pixels might break and it may look unprofessional and
unclear, this applies usually when you’re designing the main plane for the game. Another
way to avoid unclear environment is to use the texture in a loop as it will look clear even
on a huge plane. A way used to remove modeling is using textures with mapping, this
makes them look like realistic models but these can’t be applied to the main objects (the
one the user focuses on the most). Texturing is an important phase of the game as you
take a 2D picture (diffused map) and introduce different map on to that diffused map in
order to make it look 3D [5]. Different maps focus of different aspect, for instance if you
want to change how the shine affects the parts of the image you manipulate the specular
map of that particular image. Multiple maps merge and make a 3D like image. Problems
related to integrating occur too as how to integrate textures built on other applications in
Unity for Unity does not support every texture (file) format. Online tutorials and help from
individuals help with the integration processes of other applications with Unity and how
Unity saves their information. Integration problems usually occur when textures are to
be integrated in the Unity environment (world) as they support just certain file formats.
After the modeling, texturing, integrating and whole designing of the items/terrains is done,
comes the testing part; either you can test the system all at once or you can perform the
testing module by module. Different people use different approach to testing while in this
project it was essential to perform testing module by module as fixing bugs in later stages
would require more time and cost. After the testing by the project team it is necessary to
launch the beta version of the game as a whole for further testing by the stakeholders/users
which is to be done at the end of the semester.

Chapter 3

Requirement Specifications

3.1 Existing System

The existing systems (in Pakistan) lack quite a few things, for instance the existing systems
in Pakistan the work on gaming graphics isn’t on point. The system either just focuses on
graphics while increasing the render time of the game. Another issue is the physical aspect
of the games where the games lack physical sense. The existing systems also don’t focus
much on the interfaces of the game, the game needs to have an interface easy to understand
and it shouldn’t just have too many colors which don’t have a soothing effect on the human

eye.

3.2 Proposed System

The project has focused on human computer interaction firstly by improving the visual
effect of the game. Secondly the project manages to blend the color combinations in
perfectly giving the user a great experience. A usual gaming experience most users don’t
like is that most games focus too much on the graphical details and extra effects which can
result in nausea and dizziness, this project has managed to reduce these effects by altering
setting minimizing the screen shakes so that the user gets to have a great experience.
Another thing the project manages to deliver is a good render time because of the graphical
techniques such as texturing and giving a realistic effect by using multiple maps on a single
image and giving an effect of that of a real object. The interfaces make use of usually the
light color found appealing to the human eye. The glitches in the game however need some
work and are likely to be improved in the near future. Every module of the game has been
tested separately and also with modules it depends on.

Requirement Specifications 6

3.3 Requirement Specification

The non-functional requirements focused in the project were to maintain a balance between
the graphics of the game and the performance that is minimizing the render time of the
game (in other words faking high quality graphics by using the mapping technique instead
of rendering every object in the world, even the ones the user won’t focus on much).
Maintaining game human computer interaction standards were the top priority of the
project which was achieved through research on interaces (what color combination would
suit what interface).

3.4 Use Case

The use case diagram basically illustrates most of the functional requirements of the
application and an overview of how the users will interact with the application once it
was built and put into use. Every use case represents a different task or event that our
application will do. The main use case diagram of our application is shown in figure 3.1.
The actors in this case are the persons who will be using the system which are our general

users.
Console]
Install Garne
._ ‘H\-‘__
. /,-—-—'—'—».\
Ai \é _{ initalize Game } mndg"-bl Play Game
Player \ S _,_,-‘ ‘_//- o:lnnda
\\\ /{_— N R |l\ Exit Game \I
(Access cGnlro|5> . /
S——
N~
Figure 3.1: Use Case: Console
Actor Player/User
Brief Description | Describes how player can access controls and use them while playing the game.
Pre-Condition The machine must meet the system requirements.
Post-Condition (Beta version) The player provides feedback to if the game needed improvement.

Table 3.1: Use Case: Console Specificaion Table

3.4 Use Case

Al Functionalities)

Receive Input

<

Al Player
Report action

G

Figure 3.2: Use Case: Al Functionalities

Actor Artificial Intelligence

Brief Description | Describes the artificial intelligence’s response to different input.

Pre-Condition The player must be in the AI’s territory

Post-Condition Elimination of either the player or the Al (in case the player dies the game ends)

Table 3.2: Use Case: Al Functionalities Specificaion Table

Admin Panel J

Start Game Engine

N

Stop Game Engine

1<

Start Game

Administrator
Stop Game
Figure 3.3: Use Case: Admin Panel
Actor Production team/Admin
Brief Description | Enable/Disable user’s access to the game.

Pre-Condition

Reports submit (for a certain user)

Post-Condition

Re-access after a certain period of time (for the player)

Table 3.3: Use Case: Console Specificaion Table

Chapter 4

Design

4.1 Class Diagrams

CharacterDamage
HitPoints: fioal
InitialHitPoints: fioal
BodyStayTime: fioat NPCAttack
A WeaponsEffectCamp: WeaponsEtact
FPSWalker: FPSRigidBodyWalker OnEnable(): void FPSWalker: FPSRigidBodyWalker
NPCAflackCompanent: NPCAtack ApplyDamageq...): woid frange: fioat
Planper PlayerWeapans Die): void
OnEnabled): void
Stan(): vod ml.aml.hdnﬂm: mwnd
OnEnable(): void o
SpawnNPC{): IEnumeralor
NPCSpawner
spawnDelay: float
NPCRaglstry spawnTime: float
FPSWalker: FPSRigidBodyWalker timedof: floal
nearestMpedist: float
Mpedest: float
Start(): void
Update(): void
Stant(): void Spawn{GameObj Npcpre): void
UnregistarMPC{Al MpeAl): void
FindClosesiTarged(...): void
Wevelimepw . WayPointGroup
warmapTime: float
StariTime: floal drawWayPoints: boal
countDown: float
Starl(): void
OnDrawGizmas(): void
Start{): void
FixedlUpdate(); void
StantWave{):|Enumarator RemaveBody
spawnied: bool
startTime: float
bodyStay Time: float
Stan(): void
FocsdUpdate(): void

Figure 4.1: Al Asset

4.1 Class Diagrams

Camerakick
FPSWalkerCorm: FPS| DregRigidBoy
al ; igidBodyWalker —
IronsightsComp: Iron:;'.ols IFPSWM:‘)' Fwﬂw
FPS.FlaymW FPSPlayer n : Iwmw
Start{): woid
LateUpdate(): void) |l void
DragObject (float dist): IEnumerator
SmoothMouseLook
InputComp: InputControl
sansitivity: float
sensitivityAmt: float
CamerkickComp: Camerakick Stan(): void
timer: float —— | Update(): void
bobbingspesd: float ClampAngle(...): float
Start(): void
Update(): void
VerticalBob
FootStepsComp: FootSteps
timerRoll: float
dampOrg: float
Stant(): void

Figure 4.2: Camera Asset

PlayAudioAtPos

instance: PlayAudicAtPos

2 wokd
PlayClipAt(...): AudioSource

Design

PainFade

PainFadeObj: GameObj

Fadeln{...): void

DoFadel...). IEnumerator

: PlayerWeapons
WeaponBehaviorComp: WeaponBehavior
FPSWalkerComp: FPSRigidBodyWalker

Start(): void

impactEffect]...): void
BulletMark(RaycastHit hit): void

FadeQutDecals

LevelLoadFade

StariTime: foat
markDuration: int

LevelLoadFadeObj: GameObj

Start(): vold
Update(): void

DoFadeOuty...): IEnumbaraior

Figure 4.3: Effect Asset

10

4.1 Class Diagrams

Moncbehavior
HelpText HealthText AmmoText

StarTime: float HealthGUI: fioat AmmoGui: int

FiPressed: bool fomScale: foat fontScale: foat

maveTime: float tveHP: bool horzontalOftset: fioat

Stan(): void OnEnabla{): void
Start{): void : vold - void
Update(): void Update() Update()
HungerText WaveText ThristText

HungerGUI: float waveGUI: int thristGUI: float warmupGUI: float
fontScale: float fomScale: float fomScale: floal OldWarmug: bool
VerticalOffset: float Oidwave: int VericalOffset: float Wavebegins:
Stan(): void OnEnable{): void Stan(): void On :
Update(): void Updatex): void Updated): woid Update(): void

Figure 4.4: HUD Asset

Design

HealthPickup

healthToAdd: float
removeOnUse: bool
PickupSound: AudioClip

Pickuphem{Gameobj user): void

Monobehavior
-

AmmoPickup WeaponSpawn
weaponMumber: int spawnTime: float
removeOnUse: timeLeft: float
boolammoToAdd: int GunPrefab: GameQObj
Start(): void Start(): void
Piniesmitamilownie Update(): void

Spawn(): void
WeaponPickup FoodPickup
waaponNumber: int removeOnUse: bool
weapanToDrop: int hungerToRemove: int
removeTime: float healthToRestore: int
Start{): void Start(): void Start(): void
Pickuphtem(): void Pickupltem(): void
Remaovepickup(): void

Figure 4.5: Items Asset

12

4.1 Class Diagrams

FoliageRustle

rustiefx: AudioSource
FootStepsComp: FootSteps

DamgeZone

damage: float
float

Start(): void
OnTriggerEnter(Collifer col): void

delay:
damageTime: fioat

Stan(): void

OnTriggerStay(Collider col): void

threshold: float
refreshTerrain: bool
WorldRecenterTima: float

WaterZone

Start(): void
LateUpdate(): void

FPSWalkerComp: FPSRigidBodyWalker
FootSteps

FootStepsComp:

thn-l’#uaporﬂorrp PlayerWeaapons

InstamtDeathCollider

Reset(): void

Stan): void
OnTriggerStay(collider col): void
OnTriggerEnter{collider col): void

OnTriggerEnter(Collider col): void

Figure 4.6: Objects Asset

13

Design

FPBPlayer FPSRigidBodyWalker
: PlayariWeapons
:m InputCome: InpuiCantrol v
' WaaponBahaviorComp: WeaponBehavior
Stari(): void
i oa e
m“"‘“’“"‘"" FoxedUpdate(): void
FootSteps
- FPSWalkerComg: FPSRigidBodyWalker
g MAtErialTypa: string
volumeAmt: float
l'lpl.l'lcﬁl'ﬂfﬂ Stan(): void
Firehold: bool TootStepStx(): void
|, reloadPress: bool
Jumphold: bocl
Starl(): void
: wosd
Accereratalnput(fioal input): void
unrﬂulld-ﬂunmrm
FPSPlayerComp: FPSPlayer
VisibleBody
QN . Stan(): void
hpd&:w.hp::mgonh‘ol . D fioat damage): void

Figure 4.7: Player Asset

14

4.1 Class Diagrams

ShellEjection PlayerWeapons
FPSPlayerComp:FPSPlayer InputComp: InputControl
PlayerWeaponsComp: : Camerakick
rotated: bool L onsighisComp: ronsights
Stant(): void Start(): void
Update(): void Updata(): void
CGMSM.:{BD IEnumeralos Lmaﬂ woid

GunSway

FPSPlayerComp: FPSPlayer

HorizontalB: HorizontalBob

dampspeed: float

Start(): void FPSPlayerComp: FPSPla;

Update(): void InputComp:inputControl v
VerticalB: VerticalBob
Stant(): void
Update(): void

Figure 4.8: Weapons Asset

15

Design

4.2 System Architecture

Sub-systems

Scripting

System

Goal/Objective

System

Interfaces

Figure 4.9: System Architecture

16

4.3 Basic Flow of the Class Diagram between assets 17

4.3 Basic Flow of the Class Diagram between assets

The diagram shows the basic interdependencies among classes of different assets (the boxes
in the diagram represent the assets while the edges show the use of objects of different
classes between the assets):

Artificial Intelligence

Weapons

Figure 4.10: Basic Asset Diagram

Design 18

4.4 Design Constraint

There were a few design constraints as their cost (time) exceeded the expected completion
date, the constraints included the inter communication between softwares used in the
project. The texturing done had to be in a specific format so that Unity could support it.
This was achieved using the software known as blender as it also functions in the format
supported by the Unity gaming engine. Another constraint was that of the programming
language for scripting as Unity only supported C-Sharp or javascripting. The project didn’t
involve any funding, unfortunately the team had work on the free version of the softwares
which resulting in them not having the access to many extensive software features. There
were only two maps used on the objects while preparing them; one being the diffused map
and the other being the normal map. A group of mixers, adders etc. were used to make
shaders which supported both metal and non-metal objects which were used in the node
mode to add final touches to the objects (manipulating the strength, color/non-color data
etc. according the requirement for the object). Following are a few screen shots of the
objects while being prepared; the screenshots showing three views (3D view, node editor,
rendered view NOTE: cycle render is used as blender render doesn’t support node editor):

L g TR

Figure 4.11: Image shows the use of PBR,,etal (used formetalob jects)

4.4 Design Constraint 19

Figure 4.12: Image shows the use of PBRielectric

Figure 4.13: Images show the use of both PBR,,etalaswellasPBR jielectric

Design 20

Figure 4.14: Using maps for the main body for the ak 47

Figure 4.15: Using maps for the recoil of the ak 47 (the metal part)

Chapter 5

System Implementation

As mentioned in the previous chapter the project consists of a scripting portion, an interface
portion, a sub system portion which touches the modeling and artificial aspect of the game.

5.1 System Architecture

The scripting the performed through C sharp, may it be of any object; while the modeling
and texturing is done on blender and photoshop. The blender file format is supported
in unity hence there weren’t any communication (merging) problems. A tool named
“crazybump” helped in mapping of different object, it works on the simple principle of
creating normal, specular map etc. any picture provided making them give a 3d effect (used
as it improved the cost and time of the project). Collision and rigid body etc. algorithms
were used to help with the physical aspect of the game (APIs); artificial intelligence
algorithms were studied and manipulated as per the project needs. The project however
lacked security however converting the C output to bytes and then encrypting it was the
basic technique that was to be applied but due to lack of knowledge about the encryption
algorithms and techniques the team left the security part as they resulted in further bugs
etc.

21

Chapter 6

System Testing and Evaluation

The testing approach used in this particular project as per requirement was the modular
testing; in other words the testing was incrementally testing. The big bang approach wasn’t
used as this project wasn’t of a small scale and there were inter dependencies in modules
or assets of the project. The main focus of the testing phase was on the physical aspect of
the game (the C code), these testing check if collisions were working fine and what is the
impact of an object on other objects present in the game (if contacted with), along with
that there were some checks on the bullet projection (whether if it should be influenced
by factors like wind etc). All the modules weren’t testing due to the time constraints.
The testing approach used was white box testing as well as black box testing (in other
words we gray box tested the project), for the white box testing we constructed CFGs
and then created du path table, definition table and uses table; this helped us make testing
cases as we knew about the conditions through the CFGs. The graphics user interface was
testing through beta testing of the game, making the user interact (play) and getting their
feedbacks to what is to their liking and what module needs improvement (what the module
lacks). The user provided us with information like if a module contains too much details (
isn’t interactive enough), which resulted in findings like what if the game is interactive,
easy to play, fun and other information from the user. As there weren’t security measures
in the game hence there wasn’t any security test.

22

System Testing and Evaluation

Test Case ID TCAI-1

Brief Description | Enemy Radar/Enemy Spawn

Action 1) Player reaches in enemy territory
2) Gaming Engine spawns enemy

Expected Result | Player sees enemy.

Status True

Remarks N/A

Table 6.1: Test Case: Artificial Intelligence 1

Test Case ID TCAI-2
Brief Description | Al fire at sight
Action Al fires as soon as player comes in range.
Expected Result | 1) Player/Al loses health if hit
2) Al attacks player
Status True
Remarks N/A

Table 6.2: Test Case: Artificial Intelligence 2

Test Case ID

TCWeapon-1

Brief Description

Use Weapon

Action

1) Fire Weapon (left click mouse)
2) Reload (press r) Weapon

3) Switch Weapon

4) Pickup Weapon

5) Hit with Weapon

Expected Result

1) Bullet count changes/reloads

2) Weapon changes

3) Weapon comes in your backpack and
disappears from the pickup position

4) Player moves arm to swap weapon

Status

True

Remarks

N/A

Table 6.3: Test Case: Weapon 1

Test Case ID TCWeapon-2

Brief Description | Zoom on special Weapons
Action Right click on mouse

Expected Result | Camera change on basic viewport
Status True

Remarks N/A

Table 6.4: Test Case: Weapon 2

23

System Testing and Evaluation

Test Case ID TCBasics-1

Brief Description | Move in 3D world

Action Use move keys on keyboard

Expected Result | Players changes its coordinates in world
Status True

Remarks N/A

Table 6.5: Test Case: Basics

24

Chapter 7

Conclusions

TThe project helped us understand about the character skeleton basics, how joints are
positioned, material settings and animations of characters. The project furthermore pro-
vided how using triangles instead of polygons can change your render mechanics (how
it improves it and this also helps users with “not the high end pcs” to be able to play the
game). Silhouettes are to be specified before the actual execution of the design; also when
you’re making a game the color combination while creating a character is very important
as the character should not have to many color or the color contrast on the character’s body
shouldn’t vary too much from one body part to another as it is not visually pleasing to the
user. Glitches play an important part in the game as they make the game appear to be more
enjoyable. Most importantly the project helped in understanding time management and
team work.

7.1 Future Enhancements

Future enhancements include procedural level generation along with procedural content
generation. A multiplayer option is also planned which then will allow more administrative
control; for instance the admin will be able to temporarily ban an IP for communication,
ability abuse etc., this will also help in establishing a better gaming community. Moreover
new weapons and techniques will be introduces to meet better gaming standards.

25

References

[1] Unity. (n.d.). Retrieved from Unity 3D: http://docs.unity3d.com/Manual/Preparingacharacterfromscrat
Cited on p. 2.

[2] J. (2014). C Game Programming Cookbook for Unity 3D. W.Murray. Cited on p.
2.

[3] T. (2007). Introducing Character Animation with Blender. Mullen. Cited on p.
2.

[4] Andrew. (n.d.). Retrieved from Blender:https://www.blender.org/support/tutorials.
Cited on p. 3.

[5] A.(n.d.).Retrieved from Youtube: https://www.youtube.com/blender,uruPrice.Citedonp.4.

26

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Project Background/Overview
	1.2 Problem Description
	1.3 Objectives
	1.4 Project Scope

	2 Literature Review
	3 Requirement Specifications
	3.1 Existing System
	3.2 Proposed System
	3.3 Requirement Specification
	3.4 Use Case

	4 Design
	4.1 Class Diagrams
	4.2 System Architecture
	4.3 Basic Flow of the Class Diagram between assets
	4.4 Design Constraint

	5 System Implementation
	5.1 System Architecture

	6 System Testing and Evaluation
	7 Conclusions
	7.1 Future Enhancements

	References

