Automotive Embedded Monitoring Device (Dr. Car)

Ali Ejaz Nazir 01-134141-007 Raja Hamza Habib 01-134141-102

Supervisor

Adeel M Sayed

Department of Computer Science

Bahria University, Islamabad

Session: 2014-2017

ABSTRACT

Nowadays most of the vehicles come with an Engine Control Unit (ECU). ECU controls almost every function of the machine such as the braking, start up, climate control system, Fuel pressure and regulation (FPR) System and all others that are not in the control of driver. The ECU collects data from different sensors of the engine and on the basis of that data analysis it will control the sensors accordingly. E.g. If the air cleaner is blocked and air intake is low the ECU will increase the fuel distribution in injectors to compensate. If there is an error in the management system of engine that leads to bust in the combustion chamber, the ECU records it and if serious enough the check engine light will be turned yellow/red on the dashboard to notify the driver[1,2].

The purpose of this project is to provide information easily to the user of the vehicle and the mechanics. This will give the user more information of understanding of what's happening in the car. Mostly while tuning the engine the tuners monitor different sensors to check the effect of that sensor on others. Mostly mechanics check it by sound to guess for unusual things. Sometimes they may take the car on a track to check. Having a laptop in these surrounding conditions can be very hard.

This product will help the user to diagnose the problem that arises in the car and let the user to reset the sensors to clear the trouble code. It will safe their time and if after resetting the sensor the problem remains there then user have to change the sensor.

i

Table of Contents

Chapter 1 Introduction	3
1.1 Statement of the Problem	4
1.2 Project Motivation	4
1.2.1 Objectives and Goals	5
1.3 Working of Project	6
Chapter 2 Overview of Project	9
2.1 Overview,	9
2.2 Project Requirements	12
2.3 Report Structure	12
Chapter 3 History and other research work	13
3.1 On Board Diagnostics (OBD)	13
3.1.1 OBD History	14
3.1.2 OBD in European	15
3.2 ECU	15
3.2.1 Inputs and Outputs of ECU	16
3.2.1.1 Input Sensors	16
3.2.1.2 Output Controls	16
Chapter 4 Modules and Designs	17
4.1The ECU Simulator RaspberryPi	17
4.1.1 ATMEL MEB 2000P/S8253	
4.1.2 AT89ISP Software	
4.2 The ELM327 Integrated Circuit	19
Chapter 5 System Testing and Design	21
5.1 Use-case Diagram	21
5.2 Activity Diagram	22
5.3 Sequence Diagram	23
5.4 ERD	24

Chapter 6 System Testing and Design	25
6.1 Monitoring	25
6.2 Diagnostics	26
6.3 Acceleration Test	27
6.4 Digital Dashboard	28
Chapter 7 Future Recommendations	29
7.1 Future Enhancements	29
7.2 Freeze Frame Support	29
7.3 Data Logging	29
7.4 Improved Rule System	30
7.5 Keyboard On-Screen	30
7.5 GPS Support	30
7.6 Fuel Monitoring System	30
Chapter 8 Conclusion	31
REFERENCES	32

Table of Figures

Figure 1.1: Working of Project	8
Figure 2.1: J1962 (DLC)	10
Figure 1.2:Dr. Car running on the device	11
Figure 4.1:RaspberryPi	
Figure 4.2:ATMEL Board	
Figure 4.3:ATMEL Board	19
Figure 4.4:ELM327	20
Figure 5.1:Use Case Diagram	21
Figure 5.1:Activity Diagram	22
Figure 5.1:Sequence Diagram	23
Figure 5.1:ERD Diagram	24
Figure 6.1:Monitoring Interface	25
Figure 6.2: Diagnostics Interface	
Figure 6.3: Acceleration Test Interace	27
Figure 6.4: Digital Dashboard Interface	28