PRODUCED WATERQUALITY ASSESSMENT OF MISSA KESWAL OIL FIELD, GUJAR KHAN, PAKISTAN

By

HIRA MUMTAZ IQRA FAYYAZ FATEHA KHAN

Department of Earth and Environmental Sciences

Bahria University, Islamabad

2018

PRODUCED WATER QUALITY ASSESSMENT OF MISSA KESWAL OIL FIELD, GUJAR KHAN, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of BS in Environmental Sciences

 $\mathbf{B}\mathbf{y}$

HIRA MUMTAZ IQRA FAYYAZ FATEHA KHAN

Department of Earth and Environmental Sciences

Bahria University, Islamabad

2018

ABSTRACT

Research was conducted to analyze the physiochemical parameters (pH, conductivity, TDS, hardness, chloride, fluoride, heavy metals) of produced water of Missa Keswal (Gujar khan, Punjab, Pakistan) oil field and their impacts on surrounding soil and water. Produced water samples were collected from 5 settling tanks. Soil samples were also collected from the study area inside the oil field and also from the surrounding area of oil field. Soil samples were taken at distances about 0-15cm depth to analyze the impacts of produced water on surrounding soils. According to Pak-EPA standards pH of produced water lies within the defined limits and Cl was present in much higher amount than the permissible limits defined by Pak-EPA. Results of heavy metals were compared with Pak-EPA which showed that arsenic and manganese are within the permissible limit. High level of chromium observed in produced water tank 3 i.e. 1.26 mg/L. From the present study it is determined that produced water showed highly contamination of pollutants so it should be treated before releasing into the surrounding environment in order to avoid the impacts.

ACKNOWLEDGEMENTS

We offer humblest thanks to Allah Almighty for bestowing upon us the sense of enquiry and requisite potentials of research for the successful accomplishment of this piece of work.

Our special praise to the Holy Prophet Muhammad (Peace Be Upon Him), Who was an embodiment of obligingness and patience and a source of guidance for the humanity as a whole.

We are much obliged to the research supervisor, Dr. Said Akbar Khan, Senior Assistant Professor, Department of Earth and Environmental Sciences, Bahria University Islamabad Campus; for his valuable advices, continuous supervision, matchless cooperation and really good attitude throughout the research.

We have appreciativeness for Imtiaz Khan, Lab Assistant, Bahria University, Islamabad, for guiding us in experimentation throughout the research.

I acknowledge my gratefulness to the reverend Head of Department, Professor Dr. Tahseen-ullah Khan, for allowing us to carrying out this task.

Further, we confess the support of our beloved parents and siblings, who supported us morally and financially throughout our academic career, for their unconditional love, for apologizing for all my mistakes and whose prayers have always been a source of success in our lives.

ABBREVIATIONS

CDA Capital Development Authority

Pak-EPA Pakistan Environmental Protection Agency

K₂CrO₄ Potassium Chromate

Mg Magnesium

NaNO₃ Sodium Nitrate

NEQ's National Environmental Quality Standards
PEPC Pakistan Environmental Protection Council
PEPA Pakistan Environmental Protection Act

Ph Negative Log of Hydrogen Ion Concentration

TDS Total Dissolved Solid
TSS Total Suspended Solids

U.V Ultra Violet

WHO World Health Organization

As Arsenic

RBBC Right Bank Branch Canal LBBC Left Bank Branch Canal

ASTM American Society for Testing Materials

PEPC Pakistan Environmental Protection Council

WWF World wide Fund

NIH National Institute of Health

OECC Overseas Environmental Cooperation Centre

PAHs Polycyclic Aromatic Hydrocarbons

MAF Million Acre Feet

WTO World Toilet Organization

WQI Water Quality Index

SCEA Strategic Country Environmental Assessment

ADB Asian Development Bank

SOE Standard Operating Environment

WRI Water Resource Institute

PHED Public Health Engineering Department

WASA Water and Sewer Authority
CRBC Chashma Right Bank Canal

NCS National Conservation Strategy

NEAP National Environmental Action Plan

TWQR Target Water Quality Range
NTU Nephelometric Turbidity Unit
PSI Pakistan Standard Institution

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
ABBREVIATIONS	iii
LIST OF FIGURES	ix
LIST OF TABLES	xi
CHAPTER1	1
INTRODUCTION	1
1.1 Study Area	4
1.2 Climate and Geography	4
1.3 Objective of the study	4
CHAPTER 2	12
METHODOLOGY AND MATERIALS	12
2.1 Sampling Methodology	12
2.1 Sampling Methodology2.2 Analysis of physiochemicals parameters in Water	12 12
2.2 Analysis of physiochemicals parameters in Water	12
2.2 Analysis of physiochemicals parameters in Water2.2.1 Physical Parameter Analysis	12 12
2.2 Analysis of physiochemicals parameters in Water2.2.1 Physical Parameter Analysis2.2.2 Chemical Parameter Analysis	12 12 12
 2.2 Analysis of physiochemicals parameters in Water 2.2.1 Physical Parameter Analysis 2.2.2 Chemical Parameter Analysis 2.2.3 Chloride Estimation 	12 12 12 13
 2.2 Analysis of physiochemicals parameters in Water 2.2.1 Physical Parameter Analysis 2.2.2 Chemical Parameter Analysis 2.2.3 Chloride Estimation 2.2.4 Fluoride Estimation 	12 12 12 13

2.3.1 pH of Soil	15
2.3.2 Chmeical Parameter Analysis	15
2.3.3 Chloride Estimation	16
2.3.4 Heavy metal Analysis	16
CHAPTER 3	17
RESULTS AND DISCUSSION	17
3.1 Analysis of Physiochemicals Parameters in Produced Water	17
3.2 Concentration of Physiochemicals in Produced Water	17
3.2.1 pH	17
3.2.2 TDS	18
3.2.3 Conductivity	19
3.2.4 Turbidity	20
3.2.5 Hardness	22
3.2.6 Fluoride	23
3.2.7 Chloride	24
3.3 Concentration of Heavy metals in Produced water	26
3.3.1 Arsenic	27
3.3.2 Zinc	29
3.3.3 Manganese	30
3.3.4 Chromium	31
3.3.5 Lead	32
3.3.6 Nickel	33
3.4 Analysis of Physiochemical in Drinking Water	35

3.4.1 pH	36
3.4.2 Conductivity	38
3.4.3 TDS	39
3.4.4 Turbidity	40
3.4.5 Hardness	41
3.4.6 Fluoride	43
3.4.7 Chloride	44
3.5 Analysis of Heavy Metals in Drinking water	45
3.5.1 Arsenic	46
3.5.2 Zinc	47
3.5.3 Manganese	48
3.5.4 Lead	49
3.5.5 Chromium	51
3.5.6 Nickel	52
3.6 Analysis of Physiochemical in Soil	53
3.6.1 pH	53
3.6.2 Chloride	54
3.6.3 Fluoride	55
3.7 Analysis of Heavy metals in Soil	57
3.7.1 Arsenic	58
3.7.2 Zinc	59
3.7.3 Manganese	60
3.7.4 Chromium	61

3.7.5 Lead	62
3.7.6 Nickel	63
CONCLUSION AND RECOMMENDATION	64
CONCLUSION	64
RECOMMENDATIONS	64
REFERENCES	65

LIST OF FIGURES

Figure 3.1 Analysis of pH concentration in produced water	18
Figure 3.2 Analysis of TDS in produced water	19
Figure 3.3 Analysis of Conductivity in Produced water	20
Figure 3.4 Analysis of Turbidity in produced water	21
Figure 3.5 Analysis of Hardness in produced water	22
Figure 3.6 Analysis of Fluoride in produced water	23
Figure 3.7 Analysis of Chloride in produced water	25
Figure 3.8 Analysis of Arsenic in produced water	28
Figure 3.9 Analysis of Zinc in produced water	30
Figure 3.10 Analysis of Manganese in produced water	31
Figure 3.11 Analysis of Chromium in produced water	32
Figure 3.12 Analysis of Lead in produced water	33
Figure 3.13 Analysis of Nickel in produced water	34
Figure 3.14 Analysis of pH in drinking water	37
Figure 3.15 Analysis of Conductivity in drinking water	38
Figure 3.16 Analysis of TDS in drinking water	39
Figure 3.17 Analysis of Turbidity in drinking water	40
Figure 3.18 Analysis of Hardness in drinking water	42
Figure 3.19 Analysis of Fluoride in drinking water	43
Figure 3.20 Analysis of Chloride in drinking water	45
Figure 3.21 Analysis of Arsenic in drinking water	47
Figure 3.22 Analysis of Zinc in drinking water	48
Figure 3.23 Analysis of Manganese in drinking water	49
Figure 3.24 Analysis of Lead in drinking water	50
Figure 3.25 Analysis of Chromium in drinking water	51

Figure 3.26 Analysis of Nickel in drinking water	52
Figure 3.27 Analysis of pH in soil	54
Figure 3.28 Analysis of Chloride in soil	55
Figure 3.29 Analysis of Fluoride in soil	56
Figure 3.30 Analysis of Arsenic in soil	58
Figure 3.31 Analysis of Zinc in soil	59
Figure 3.32 Analysis of Manganese in soil	60
Figure 3.33 Analysis of Chromium in soil	61
Figure 3.34 Analysis of Lead in soil	62
Figure 3.35 Analysis of Nickel in soil	63

LIST OF TABLES

Table 3.1 Results for physiochemical parameters of produced water	17
Table 3.2 Concentration of Heavy metals in produced water	27
Table 3.3 Concentration of physiochemical parameters in drinking water	36
Table 3.5 Concentration of Heavy Metals in Drinking water	46
Table 3.6 Concentration of physiochemical parameters in soil	53
Table 3.7 Concentration of Heavy metals in soil	57