2D STRUCTURAL DELINEATION OF SAWAN AREA: PETROPHYSICAL ANALYSIS AND ROCK MECHANICS OF WELL, SAWAN-01 CENTRAL INDUS BASIN, PAKISTAN

By

WAJIHA ASLAM

SYED AMMAR QAISER

JEVERIA SEHAR

Department of Earth and Environmental Sciences Bahria University, Islamabad

2012

2D STRUCTURAL DELINEATION OF SAWAN AREA: PETROPHYSICAL ANALYSIS AND ROCK MECHANICS OF WELL, SAWAN-01 CENTRAL INDUS BASIN, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of B.S in Geophysics

WAJIHA ASLAM

SYED AMMAR QAISER

JEVERIA SEHAR

Department of Earth and Environmental Sciences Bahria University, Islamabad

2012

DEDICATION

We dedicate this work to our teachers and families especially Parents for their consistent encouragement, belief in our abilities, prayers and their endless love and affection which kept us motivated throughout our life.

ABSTRACT

The main purpose of the study is to evaluate hydrocarbon potential of a well named Sawan-01 in Sawan Gas Field, Lower Indus Basin, Pakistan and to delineate the subsurface structure and locate the perspective zone in the study area. This has been achieved by using complete suite of wire line logs and available well data and two dip lines PSM-98 202,PSM-96 114 and three strike line PSM-96 133,PSM-96 135,PSM-96 115. This complete set of data is issued by Land Mark Resources (LMKR) Pakistan with the prior permission of Directorate General of Petroleum Concessions (DGPC), Pakistan.

Five horizons were marked which were Sui Main Limestone(SML), Ranikot(BT), Top Lower Goru (TLG), TOP C, TOP B and two way time ,velocity contour maps, Average velocity maps were generated of these above mentioned horizons. Depth contour maps were generated with the help of two way time and velocity contour maps which delineates the subsurface structures and tectonic activities which took place throughout geologic past. 3D surfaces were also generated.

Further, the reservoir was evaluated for the hydrocarbon potential in detail using set of equations and different formation evaluation charts made by Schlumberger. The methodology adopted to accomplish this task include; the measurements for the Shale volume by using Gamma Ray Log, Porosities of the Reservoir zone by density Log, Resistivity of water by using Spontaneous potential log, Saturation of water in the zone of reservoir zone by the results for the dissertation were then displayed in the form of excel sheets and graphs for the better approach towards the task. These all displayed results show a good reservoir quality.

ACKNOWLEDGEMENT

We are especially indebted to our dissertation supervisor Mr. Majid Ali (Assistant Geologist) and Mr. Zeeshan (Assistant Geophysicist) from (PEL) for giving us an initiative to this study and his inspiring guidance, dynamic supervision and constructive criticism helped us to complete this work in time.

We are also obliged to our internal supervisor Ms. Mehwish for her help and guidance during the completion of this dissertation.

We would like to thank our all teachers especially head of department Dr. Zafar for their valuable knowledge, assistance, cooperation, kind attention and guidance throughout the completion of our degree.

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	ii
CONTENTS	iii
FIGURES	viii
TABLES	х

CHAPTER 1

INTRODUCTION

1.1	Introduction of the area	1
1.2	Location of the area	2
1.3	Accessibility	3
1.4	Topography	3
1.5	Climate	4
1.6	Objectives of the research	4
1.7	Development of Sawan Gas Field	5
1.8	Development wells	6
1.9	Data used	7
1.10	Base map	8
1.11	Methodology	9
1.12	Petroleum play	9

CHAPTER 2

GEOLOGY AND TECTONICS OF THE AREA

2.1	Regional tectonic settings	11
2.2	Geologic setup of central Indus basin	12
2.3	Subdivision of central Indus basin	13
2.4	Stratigraphic of lower Indus basin	15

CHAPTER 3

ACQUISITION AND PROCESSING TECHNIQUES

3.1	Acquisition techniques	21
3.2	Seismic data processing	29

CHAPTER 4

SEISMIC DATA INTERPRETATION

4.1	Introduction	30
4.2	Methods of interpretation of seismic data	30
4.3	Interpretation process	31
4.3.1	Identification of reflectors	31
4.3.2	Picking and Correlation of reflectors	32
4.3.2.1	Control line	32
4.3.2.2	Tie points	32
4.3.3	Horizons	32
4.3.4	Fault Identification	33
4.4	Two way time contour maps	33
4.5	Depth contour maps	33
4.6	Base map	34
4.7	Seismic sections	34
4.8	Horizons and fault marking	34
4.9	Interpreted seismic sections	36
4.10	Time sections	41
4.11	Depth sections	42
4.12	ISO velocity maps	44
4.13	Average velocity curves	47
4.14	Time contour maps	49
4.15	Depth contour maps	51

CHAPTER 5

PETROPHYSICAL ANALYSIS

5.1	Introduction	52
5.2	Log data Availability and Quality	53
5.2.1	Data acquisition	53
5.2.2	Log data quality	53
5.2.2.1	Washouts	53
5.2.2.2	Breakouts	53
5.2.2.3	Key seating	54
5.2.3	Borehole condition	54
5.2.3.1	Clay volume	54
5.2.3.2	Volume of shale	55
5.2.3.3	Porosity calculation	56
5.2.3.3.1	Porosity from Density log data	57
5.2.3.3.2	Average porosity	58
5.2.3.3.3	Effective porosity	58
5.4	Resistivity of Water	60
5.4.1	Log header	60
5.4.2	Geothermal gradient	60
5.4.3	Formation temperature	61
5.4.4	Rmf at formation temperature	61
5.4.5	Methodology	61
5.5	Water saturation	64
5.6	Saturation of Hydrocarbons	66
5.7	Log analysis results	66
5.7.1	Lower Goru sands	66

CHAPTER 6

ROCK MECHANICS

6.1	Introduction	67
6.2	Rock mechanics related to petro physics	67
6.3	Changes in Stresses	68
6.4	Elasticity	68
6.4.1	Hooke's law	69
6.4.2	Strain	69
6.4.3	Stress	69
6.5	Shear Modulus	69
6.6	Young modulus	70
6.7	Bulk modulus	70
6.8	Poisson's ratio	71
6.9	Well logs	71
6.9.1	Formulas	72
6.9.2	Calculation of Vp and Vs	72
6.10	Graphical representation of plots	73
6.10.1	Depth vs. Vp plot	73
6.10.2	Depth vs. Vs plot	74
6.10.3	Vp vs. Density	74
6.10.4	Vs vs. Density	74
6.10.5	Porosity vs. Density	75
6.10.6	Depth vs. Porosity	76
6.10.7	Depth vs. Density	77
6.10.8	Vp vs. Vs	77
6.10.9	Vs vs Porosity	78
6.10.10	Vp vs. Porosity	78
6.10.11	Depth vs. Bulk modulus	79
6.10.12	Depth vs. Young's Modulus	80
6.10.13	Depth vs. Poisson's ratio	81
6.10.14	Depth vs. Shear modulus	81
Conclusion		83

Recommendation	84
References	85
Appendix	87

FIGURES

Figure 1.1	Map showing the location of the Sawan area.	3
Figure 1.2	Base map of study area	9
Figure 2.1	Central Indus basin and subdivision into petroleum zones	13
Figure 2.2	Tectonic framework and major sedimentary basins of Pakistan	15
Figure 2.3	Stratigraphic chart of Central Indus basin	20
Figure 3.1	Generalized processing flow chart	29
Figure 4.1	Base map	30
Figure 4.2	Interpreted seismic section of line Psm96-202	31
Figure 4.3	Interpreted seismic section of line Psm96-114	32
Figure 4.4	Interpreted seismic section of line Psm96-115	33
Figure 4.5	Interpreted seismic section of line Psm96-135	34
Figure 4.6	Interpreted seismic section of line Psm96-133	35
Figure 4.7	Time section of line Psm96-202	36
Figure 4.8	Time section of line Psm96-114	36
Figure 4.9	Time section of line Psm96-115	37
Figure 4.10	Time section of line Psm96-135	37
Figure 4.11	Time section of line Psm96-133	37
Figure 4.12	Depth section of line Psm96-202	38
Figure 4.13	Depth section of line Psm96-114	38
Figure 4.14	Depth section of line Psm96-115	39
Figure 4.15	Depth section of line Psm96-133	39
Figure 4.16	Depth section of line Psm96-135	39
Figure 4.17	Average velocity graph of line Psm96-115	40
Figure 4.18	Average velocity graph of line Psm96-114	40
Figure 4.19	Average velocity graph of line Psm96-133	41
Figure 4.20	Average velocity graph of line Psm96-135	41
Figure 4.21	Average velocity graph of line Psm96-202	42
Figure 4.22	Time contour map of SML	43
Figure 4.23	Time contour map of Ranikot (BT)	43

Figure 4.24	Time contour map of TLG	44
Figure 4.25	Time contour map of top B	45
Figure 4.26	Time contour map of top C	45
Figure 4.27	Depth contour map of SML	47
Figure 4.28	Depth contour map of Ranikot (BT)	48
Figure 4.29	Depth contour map of TLG	51
Figure 4.30	Depth contour map of top C	50
Figure 4.31	Depth contour map of top B	51
Figure 5.1	Flow chart of Sawan 01	53
Figure 5.2	Depth vs. V _{shale}	55
Figure 5.3	Depth vs. Average porosity	57
Figure 5.4	Depth vs. Effective Porosity	58
Figure 5.5	Schlumberger SP 1 cross plot	60
Figure 5.6	Schlumberger SP 2 cross plot	61
Figure 5.7	Sw vs. Depth	64
Figure 5.8	Hs vs. Depth	65
Figure 6.1	Depth vs. Vp	72
Figure 6.2	Depth vs. Vs	73
Figure 6.3	Vp vs. Density	74
Figure 6.4	Vs vs. Density	74
Figure 6.5	Porosity vs. Density	75
Figure 6.6	Depth vs. Porosity	75
Figure 6.7	Depth vs. Density	76
Figure 6.8	Vp vs. Vs	76
Figure 6.9	Vs vs. Porosity	77
Figure 6.10	Vp vs. Porosity	77
Figure 6.11	Depth vs. Bulk modulus	79
Figure 6.12	Depth vs. Young modulus	79
Figure 6.13	Depth vs. Poisson's ratio	80
Figure 6.14	Depth vs. Shear modulus	81

TABLES

Table 1.1	Description of lines	7
Table 3.1	Acquisition of line Psm96-115	21
Table 3.2	Acquisition of line Psm96-114	22
Table 3.3	Acquisition of line Psm96-133	23
Table 3.4	Acquisition of line Psm96-135	25
Table 3.5	Acquisition of line Psm96-202	27
Table 6.1	Matrix densities of common lithologies	59