2D INTERPRETATION FOLLOWED BY ATTRIBUTE AND PETROPHYSICAL ANALYSIS OF SINJHORO AREA, LOWER INDUS BASIN, PAKISTAN

By

ZAHRA MANZOOR

Department of Earth and Environmental Sciences Bahria University, Islamabad

2017

2D INTERPRETATION FOLLOWED BY ATTRIBUTE AND PETROPHYSICAL ANALYSIS OF SINJHORO AREA, LOWER INDUS BASIN, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of M.S in Geophysics

ZAHRA MANZOOR

Department of Earth and Environmental Sciences Bahria University, Islamabad

2017

CERTIFICATE OF ORIGINALITY

This is to certify that the intellectual contents of the thesis

2D INTERPRETATION FOLLOWED BY ATTRIBUTE AND PETROPHYSICAL ANALYSIS OF SINJHORO AREA, LOWER INDUS BASIN, PAKISTAN

are the product of my own research work except, as cited properly and accurately in the acknowledgements and references, the material taken from such sources as research papers, research journals, books, internet etc. solely to support, elaborate, compare and extend the earlier work. Further, this work has not been submitted by me previously for any degree, nor it shall be submitted by me in future for obtaining any degree from this university, or any other university or institute. The incorrectness of this information, if any, proved at any stage, shall authorize the university to cancel my degree.

Signature:_____

Date:_____

Name of Research candidate:

ABSTRACT

The main objective of this research was delineation of subsurface structures favorable for hydrocarbon accumulation and attributes analysis. It interprets 2D seismic reflection data of selected seismic lines of Sinjhoro area, Lower Indus Basin, Pakistan. This area is situated in the Sanghar District of Sindh Province and is licensed to Oil and Gas Development Corporation Limited (OGDCL). The seismic data for this research was provided by the Land Mark Resources (LMKR), by the permission of Directorate General of Petroleum Concessions (DGPC). The data comprised six seismic lines, well tops of well CHAK 66-01, RESHAM-01. The names of the six seismic lines obtained are: (20017-SNJ-01, 20017-SNJ-03, 20017-SNJ-05,20017-SNJ-06, 20017-SNJ-22, 20017-SNJ-23 and 20017-SNJ-24). Three horizons are marked and named after correlating with well tops of CHAK 66-01, after well to seismic tie these horizons are correlated in whole area. In time structure maps, it was found that the area is under the extensional tectonic regime. After Cretaceous only single major fault extends up to Chiltan Formation of Jurassic age. The lower Cretaceous shale of Sembar Formation is proven source for oil and gas discovered in the Lower Indus basin, The Basal sands of Lower Goru Formation are the main zones of interest in this area the Upper Goru Formation as well as shale within the Lower Goru Formation serves as cap rock for the underline sandstone reservoir. Time and depth contours were generated for structural delineation. Seismic attributes are applied to identify the lithological distribution, structural deformation of the strata and for identifying the presence of hydrocarbon in the area. Instantaneous frequency attributes are used for the purpose of identifying the lithological distribution and their lateral discontinuities. Variance attribute is used for identification of the structural deformation, whereas envelope attribute is used to mark the possible location for hydrocarbon presence. The hydrocarbon potential of CHAK66-01 and RESHAM-01 is calculated by evaluating petrophysical analysis of the Well logs.

ACKNOWLEDGEMENT

I am indebted to my Prof. Dr. Tahseenullah Khan (HoD) of the Department of Earth and Environmental Sciences (E and ES) for giving me an initiative to this study and his inspiring guidance, dynamic supervision and constructive criticism helped me to complete this work. I am also obliged to my internal supervisor Ms. Urooj Shakir, Assistant Professor of this department, Bahria University, for her help and guidance during the completion of this thesis. I also extend my thanks to Mr. Fahad Mehmood, Senior Lecturer of the department, for his guidance in the attribute analysis. I would also like to thank all my teachers, especially Prof. Dr. Muhammad Zafar, for his guidance. I am grateful to LMKR and DGPC for providing me the data, required to complete my research. Last but not the least, I am indebted to my parents, siblings, and near and dear for their love and support during my entire education.

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	ii
FIGURES	v
TABLES	vii

CHAPTER 1

INTRODUCTION

1.1	Introduction	1
1.2	Exploration history of study area	1
1.3	Seismic data	2
1.4	Well data	4
1.5	Data sources	4
1.6	Objectives	4

CHAPTER 2

GEOLOGY AND TECTONICS

2.1	Tectonic setting of the area	5
2.2	Sedimentary basins	5
2.3	Basins of Pakistan	5
2.3.1	Lower Indus Basin	7
2.3.1.	1 Regional structural style	7
2.4	Geology and tectonics of Sinjohoro block	8
2.5	Structural settings	9
2.6	Regional stratigraphy	9
2.7	Stratigraphy of the study area	10
2.8	Petroleum geology	13
2.8.1	Reservoir rocks	13
2.8.2	Source rocks	13
2.8.3	Caps rocks	13

CHAPTER 3

SEISMIC INTERPRETATION

3.1	Introduction	14
3.2	Interpretation process	14
3.2.1	Identification process of reflectors	14
3.2.2	Welcome to seismic ties	15
3.2.3	Misties	15
3.2.4	Control lines	15
3.2.5	Tie points	16
3.2.6	Horizons	16
3.2.7	Fault Identifications	16
3.2.8	Interpretation of seismic sections	16
3.2.8.1	Seismic section 20017-SNJ-03	16
3.2.8.2	Seismic section 20017-SNJ-01	17
3.2.8.3	Seismic section 20017-SNJ-05	18
3.2.8.4	Seismic section 20017-SNJ-06	19
3.2.8.5	Seismic section 20017-SNJ-22	20
3.2.8.6	Seismic section 20017-SNJ-23	20
3.2.8.7	Seismic section 20017-SNJ-24	21
3.2.9	Identification of Faults	22
3.3	Two way time contour Maps	22
3.4	Depth contour maps	22
3.5	TWT map of TLG Formation	23
3.6	TWT map of Basal sands	24
3.7	TWT map of Chiltan Formation	25
3.8	Depth map of Lower Guru Formation	25
3.9	Depth map of Basal sands	26
3.10	Depth map of Chiltan Formation	27
3.11	Seismic data attributes	28
3.12	Requirements of the seismic attributes	29
3.13	Classification of seismic attributes	29
3.13.1	Pre-stack attributes	29
3.13.2	Post-stack attributes	29

3.13.3 Physical attributes	30
3.13.4 Geometrical attributes	30
3.13.5 Instantaneous attributes	31
3.13.6 Instantaneous phase attributes	31
3.13.7 Instantaneous frequency attributes	34
3.13.8 Instantaneous quality factor (Q)	37
3.13.9 Trace envelope	38

CHAPTER 4

PETROPHYSICS

PETROPHYSICS

4.1 Introduction	41
4.2 Log data availability and quality	42
4.2.1 Data acquisition	42
4.2.2 Log data quality	42
4.2.2.1 Washouts	42
4.2.2.2 Breakouts	42
4.2.2.3 Key seating	43
4.2.3 Log analysis procedure	43
4.2.3.1 Well CHAK 66-01 (Basal Sands)	43
4.2.3.1.1 Clay volume	44
4.2.3.1.2 Volume of the shale	44
4.2.3.1.3 Porosity calculation	45
4.2.3.1.4 Porosity from density log data	45
4.2.3.1.5 Average porosity	46
4.2.3.1.6 Effective porosity	46
4.2.3.1.7 Resistivity of water	46
4.2.3.1.8 Water saturation	47
4.2.3.1.8a Hydrocarbon saturation	48
4.2.4.1 Well CHAK 66-01 (Massive Sands)	48
4.2.4.1.1 Clay volume	49
4.2.4.1.2 Volume of shale	49

4.2.4.1.3	Porosity calculation	50
4.2.4.1.3a	Average porosity	50
4.2.4.1.3b	Effective porosity	50
4.2.4.1.4	Resistivity of water	50
4.2.4.1.5	Water saturation	51
4.2.4.1.5a	Hydrocarbon saturation	51
4.2.5.1	Well RESHAM-01(Basal Sands)	51
4.2.5.1.1	Clay volume	51
4.2.5.1.2	Volume of shale	52
4.2.5.1.3	Porosity calculations	52
4.2.5.1.3a	Average porosity	52
4.2.5.1.3b	Effective porosity	52
4.2.5.1.4	Resistivity of water	52
4.2.5.1.5	Water saturation	53
4.2.5.1.5a	Hydro carbon saturation	53
4.2.6.1	Well RESHAM-01(Massive Sands)	53
4.2.6.1.1	Clay volume	53
4.2.6.1.2	Volume of shale	54
4.2.6.1.3	Porosity calculations	54
4.2.6.1.3a	Average porosity	54
4.2.6.1.3b	Effective porosity	54
4.2.6.1.4	Resistivity of water	55
4.2.6.1.5	Water saturation	55
4.2.6.1.5a	Hydrocarbon saturation	55
DISCUSS	ION and CONCLUSION	56
REFEREN	VCES	58

FIGURES

Figure 1.1 Location map of study area	01
Figure 1.2 Base map of the study area	03
Figure 2.1 Regional tectonic settings of Pakistan	06
Figure 2.2 Structural settings of Lower Indus Basin	08
Figure 2.3. Structural setting of Lower Indus Basin and offshore area	09
Figure 2.4 Stratigraphic sequence of the Lower Indus Basin	11
Figure 3.1. Interpreted seismic section of SNJ-03.	18
Figure 3.2. Interpreted seismic section of SNJ-01.	19
Figure 3.3. Interpreted seismic section of SNJ-05.	19
Figure 3.4. Interpreted seismic section of SNJ-06.	20
Figure 3.5. Interpreted seismic section of SNJ-22.	21
Figure 3.6. Interpreted seismic section of SNJ-23.	22
Figure 3.7. Interpreted seismic section of SNJ-24.	22
Figure 3.8. Time contour map of TLG.	24
Figure 3.9 Time contour map of Basal Sands.	25
Figure 3.10. Time contour map of Chiltan Formation.	26
Figure 3.11. Depth contour map of TLG.	27
Figure 3.12. Depth contour map of Basal sands.	28
Figure 3.13. Depth contour map of Chiltan Formation.	29
Figure 3.14 Instantaneous phase attribute of SNJ-01	33
Figure 3.15 Instantaneous phase attribute of SNJ-03	34
Figure 3.16 Instantaneous frequency attribute applied on SNJ-01	36
Figure 3.17 Instantaneous frequency attribute applied on SNJ-03	37
Figure 3.18 Instantaneous quality factor applied on SNJ-01	38
Figure 3.19 Instantaneous quality factor applied on SNJ-03	39

Figure 3.20	Trace envelope attribute applied on SNJ-01	40
Figure 3.21	Trace envelope attribute applied on SNJ-03	41
Figure 4.1	Flow chart used in the interpretation on (Resham-01and CHAK 66-01)) 42
Figure 4.2	Petrophysical interpretation on Basal Sands of Chak 66-01	44
Figure 4.3	Petrophysical interpretation on Massive Sands of Chak 66-01	49
Figure 4.4	Petrophysical interpretation on Basal Sands of Resham-01 well	52
Figure 4.5	Petrophysical interpretation of Massive Sands of Resham-01 well	54

TABLES

Table 2.1Borehore Stratigraphy of Well Chak 66-01			12		
T 11 0 1	D 1	G ,	1		10

Table 2.1Borehore	Stratigraphy of Well	I Chak 66-01	13
-------------------	----------------------	--------------	----