2D SEISMIC INTERPRETATION AND FEASIBILITY STUDY FOR AVO ANALYSIS USING ROCK PHYSICS MODELING IN KADANWARI FIELD, LOWER INDUS BASIN, PAKISTAN

By

ANEEQA IDREES

Department of Earth and Environmental Sciences Bahria University, Islamabad

2015

2D SEISMIC INTERPRETATION AND FEASIBILITY STUDY FOR AVO ANALYSIS USING ROCK PHYSICS MODELING IN KADANWARI FIELD, LOWER INDUS BASIN, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of M.S in Geophysics

ANEEQA IDREES

Department of Earth and Environmental Sciences Bahria University, Islamabad

2015

ABSTRACT

Kadanwari Gas field was discovered in 1989 with Lower Goru sand packages as prolific reservoirs. It was initially considered to be a Four-way dip closure trap however during field appraisal stratigraphic trap potential of Lower Goru sands was observed. Since then, a lot of work has been done using advance seismic techniques for reservoir characterization to enhance production profile.

This feasibility study focuses on utilizing Fluid replacement modeling and AVO modeling to determine AVO response of Lower Goru sands with varying reservoir fluids. The objective of this research is to observe variation in log response and elastic moduli of sands with varying pore fluid. Lower Goru E sand interval is producing reservoir in the area and is used in this study. Vp/Vs plots for original log curves (Gas filled) as well as Fluid substituted (Water filled) are generated and variation in data points is analyzed. Furthermore Fluid substituted curves and original log curves are used to generate AVO synthetic seismograms. AVO response is analyzed in these traces by generating a gradient curve. Intercept and Gradient plots are then generated and the outcomes are compared with theoretical crossplots to determine whether the AVO model response for Lower Goru E Sands is accurate. Structural interpretation is performed on available 2D seismic data to develop an idea about orientation of faults and behavior of strata in response to regional tectonics. Petrophysical analysis of the area defines probable producing intervals of the reservoir.

The results of this feasibility study indicate that Lower goru E sands show AVO response after rock physics modeling. It is further proposed to conduct AVO analysis on Pre-Stack gathers to characterize reservoir as a part of field development.

CONTENTS

	Page
ABSTRACT	i
ACKNOWLEDGEMENT	ii
CONTENTS	iii
FIGURES	v
TABLES	vii

CHAPTER 1

INTRODUCTION

1.1	Study area	1
1.2	Location and Access	2
1.3	Objectives of Research	2
1.4	Data obtained	3
1.5	Methodology	3

CHAPTER 2

GEOLOGY AND TECTONICS

2.1	Regional Geological setting	5
2.2	Regional Tectonic history	6
2.3	Regional Tectonic style	8
2.4	Stratigraphy of area	10
2.5	Petroleum play in Kadanwari Field	16
2.5.1	Source rock	16
2.5.2	Reservoir rock	17
2.5.3	Cap rock	17
2.5.4	Trap	17

CHAPTER 3

SEISMIC INTERPRETATION

3.1	Introduction	19
3.2	Data obtained	19
3.3	Methodology	20
3.3.1	Data QC	20
3.3.2	Basemap	20

3.3.3	Well to seismic tie	21
3.3.4	Horizon Picking	26
3.3.5	Fault identification	26
3.3.6	Interpretation	34
3.3.7	Two-way-Time Map	34
3.3.8	Time to Depth Conversion	36
3.3.9	Depth structure Map	38

CHAPTER 4

PETROPHYSICAL ANALYSIS

4.1	Introduction	39
4.2	Well Data	39
4.3	Methodology	39
4.3.1	Calculation of Rw	40
4.4	Well Log Interpretation for Well Kadanwari-10	43

CHAPTER 5

ROCK PHYSICS AND AVO

5.1	Rock Physics	44
5.1.1	Introduction to Fluid replacement modeling	44
5.1.2	GASSMAN's equation	45
5.1.3	Rock physics analysis at well Kadanwari-10	46
5.1.4	Vp/Vs Crossplots	48
5.1.5	Results	50
5.2	Introduction to AVO	51
5.2.1	Basic Principal of AVO	52
5.2.2	AVO Classes and interpretation	53
5.3	AVO Modelling	54
5.3.1	Results	58
	CONCLUSIONS	59
	RECOMMENDATIONS	60
	REFERENCES	61

FIGURES

Page

Figure 1.1.	Location map of study area	1
Figure 1.2.	Road access to study area	2
Figure 1.3.	Workflow for research	4
Figure 2.1.	Tectonic map of Pakistan showing geological setting of study area	5
Figure 2.2.	Generalized stratigraphic column of Lower Indus Basin	16
Figure 3.1.	Basemap of Study area	21
Figure 3.2.	Kadanwari-10 well – Sonic Unedited vs De-spiked	22
Figure 3.3.	Kadanwari-01 well – Sonic log Unedited curve vs Despiked	23
Figure 3.4.	Statistical wavelet extracted from seismic line TJ89-512	24
Figure 3.5.	Synthetic seismogram of well Kadanwari-10	24
Figure 3.6.	Statistical wavelet extracted from seismic line TJ89-503	25
Figure 3.7.	Synthetic seismogram of well Kadanwari-04	25
Figure 3.8.	Interpreted seismic line TJ89-503	27
Figure 3.9.	Interpreted seismic line TJ89-510	28
Figure 3.10.	Interpreted seismic line TJ89-512	29
Figure 3.11.	Interpreted seismic line TJ89-516	30
Figure 3.12.	Interpreted seismic line TJ89-518	31
Figure 3.13	Interpreted seismic line TJ89-522	32
Figure 3.14	Interpreted seismic line TJ89-524	33
Figure 3.15	TWT structure map at Top lower goru E sand	35
Figure 3.16	Variable velocity map-Lower Goru E sand	37
Figure 3.17	Depth structure map- Lower Goru E sand	38
Figure 4.1	Schlumberger Gen-06 Chart for calculation of Rw	40
Figure 4.2	Well log analysis of well Kadanwari-10	43
Figure 5.1	Vs estimation	47

Figure 5.2 Comparison of log curves for hydrocarbon filled pore spaces and water 48 filled pore spaces

Figure 5.3 Comparison of log curves for hydrocarbon filled pore spaces and		48
	filled pore spaces (Zoomed zone of interest)	
Figure 5.4	Case I: Vp/Vs plot for hydrocarbon pore fluid case	49
Figure 5.5	Case II: Vp/Vs plot for Water bearing pore spaces	50
Figure 5.6	P wave splitting at layer boundary	52
Figure 5.7	AVO Classification	53
Figure 5.8	AVO Modeling	56
Figure 5.9	Gradient vs Intercept for Case I and Case II	57
Figure 5.10	Comparison between actual crossplot and theoretical representation	58

TABLES

		Page
Table 1.1.	Control points for well velocities used for variable velocity map	36
Table 1.2.	Marked intervals showing reservoir properties in E sands	43

. .