EVALUATION OF SELECTED ACARICIDES RESIDUES IN HONEY FROM VARIOUS PHYTOGEOGRAPHIC REGIONS OF PAKISTAN

By

SUMAIRA AKRAM

Department of Earth and Environmental Sciences Bahria University, Islamabad

2017

EVALUATION OF SELECTED ACARICIDES RESIDUES IN HONEY FROM VARIOUS PHYTOGEOGRAPHIC REGIONS OF PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of MS in Environmental Science

SUMAIRA AKRAM

Department of Earth and Environmental Sciences Bahria University, Islamabad

2017

ABSTRACT

This research work aimed to achieve highly sensitive, selective and economically feasible multi-residue technique for quantification of selected acaricides in honey by GCµECD and GC-MSD. The two extraction procedures QuEChERS and SPE were compared and SPE was found more suitable for selected acaricides with recoveries ranged from $76\% \pm 1.3$ - $122\% \pm 2.1$ as recommended by SANCO. The Limits of quantification of both in-hive treated and environmentally extracted acaricides (LOQ) were lower than their MRLs which indicates that method was sufficiently sensitive. To make the clean-up process satisfactory, potential matrix effects and decrease in ion suppression/ enhancement was minimized by reducing the organic layer from 3 ml to 0.5 ml in SPE. In MSD, an enhancement of the signal was found for chlorpyrifos -methyl (ME > 200%). The Intra-day repeatability (RSDr_{wd}) and inter-day repeatability (RSDr_d) for the selected acaricides by proposed method was observed to be lower than 16%. This was found to be within acceptable range as set by SANCO and Codex Alimentarius guidelines. The optimized chromatographic multi-residue method was practiced to assess pesticide residues in honey samples from different apiaries of Pakistan. Monitoring results indicate that 12% of the samples contained no detectable residues of the target acaricides while 88% of honey samples from different geographical regions of KP and Punjab were contaminated with at least one of selected acaricides. 6 selected acaricides residues were detected in the collected honey samples and only 5 honey samples had residues level above MRLs. In-hive treated acaricides i.e. coumaphos, t-fluvalinate and malathion were not detected in honey samples from any selected area while fipronil and mirex were detected in only two and one selected region respectively. Thus to provide safe honey to the consumers, it is essential to monitor it occasionally to eliminate the possibility of the presence of the residues of pesticides above prescribed levels.

ACKNOWLEDGEMENTS

Foremost, I would thank Almighty Allah for providing me the opportunity and the strength to complete my MS degree. I would like to express my gratitude to my supervisor Prof. Dr. Mohammad Zafar for his continuous support, patience and motivation to carry out my MS research. His guidance and immense knowledge helped me a lot throughout the writing of this research work. My thanks are extended to my co supervisor Dr Nazia Rafique for her guidance and support to carry out my MS successfully. I could not have thought having a better advisor and mentor for my MS study. I am thankful to her for her consideration and concern towards my work. I am also thankful to Prof. Dr. Tahseenullah Khan, Head of Earth and Environmental Science Department for providing help and guidance during my research.

My sincere thanks also goes to Sir Karam Aahad, Director Ecotoxicology Research Institute, NARC for allowing me the research opportunities in his wellequipped lab and leading me working on diverse exciting projects along with my research work. Particular thanks go to all staff members of Ecotoxicology Research Institute, NARC for their support throughout my analytical work. They always welcomed me and encouraged me to take part in their activities and made me feel part of their big team. I want to acknowledge support of Mr. Khalid, Scientific Officer, Honeybee Research Institute, NARC for providing me the honey samples. I am also thankful to Mr. Khubaib and Dr. Said Akbar from Bahria University for their valuable suggestions and feedback.

My deepest gratitude goes to my husband, brothers and sister for their unflagging love and unconditional support throughout my life. No matter where they are around the world, they are always with me. My forever interested and always enthusiastic kids Basal and Hadiya: they were always keen to know what I was doing and how I was proceeding, although it is likely that they never grasped what it was all about! My new born kid Hira whose patience and fascinating smile always removed my tiredness when I was back home. Last but not the least important, I owe more than thanks to my mother for her love and support throughout my life. Without her, it was impossible for me to finish my education seamlessly.

ABBREVIATIONS

DDT	Dichlor-Diphenyl-Trichlorethylene
EFSA	European Food Safety Authority
EU	European Union
FPBC	4-Fluoro-3-Phenoxybenzaldehyde Cyanohydrin
FPB	4-Fluoro-3-Phenoxy-Benzaldehyde
GC-ECD	Gas Chromatography – Electron Capture Detector
GC*GC-TOFMS	(GC × GC) two-dimensional Gas Chromatography -Time-of-Flight Mass Spectrometric Detector
GC-MS	Gas Chromatography–Mass Spectrometry
GC-MS/MS	Gas Chromatography-Mass Spectrometry/ Mass Spectrometry
GC-NPD	Gas Chromatography – Nitrogen Phosphorous Detector
HPLC	High performance Liquid Chromatography
LC-APCI-MS	Liquid chromatography– Atmospheric pressure Chemical Ionization–Mass Spectrometry
LLE	Liquid-Liquid Extraction
LC-MS	Liquid Chromatography–Mass Spectrometry
LC-MS/MS	Liquid Chromatography-Mass Spectrometry/ Mass Spectrometry
MRLs	Maximum Residue Levels
MSPD	Matrix Solid Phase Dispersion
PCB's	Polychlorinated Biphenyls
QuEChERS	Quick, Easy, Cheap, Effective, Rugged and Safe method

SBI	Sterol Biosynthesis Inhibitor
SBSE	Stir Bar Sorptive Extraction
SFE	Supercritical Fluid Extraction
SPE	Solid Phase Extraction
SPME	Solid Phase Micro Extraction

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	ii
ABBREVIATIONS	iii
LIST OF FIGURES	viii
LIST OF TABLES	X

CHAPTER I: INTRODUCTION

1.1	Honeybee industry in Pakistan	2
1.2	Honey as an indicator of environmental pollution	4
1.3	Factors affecting bee colony health and honey quality	5
1.4	Indirect exposure of bees to agrochemicals	7
1.5	Direct exposure of bees to agrochemicals	9
	1.5.1 Synthetic acaricides	10
	1.5.2 Non-toxic natural acaricides	12
1.6	Acaricides residues in honey and its health implication	12
1.7	Maximum residue levels (MRLs) of acaricides in honey	13
1.8	Synergy/cocktail effect and unexpected bee toxicity of common	14
	chemicals	
1.9	Major incidences of pesticide residues in the beehive	15
1.10	Pesticides Monitoring Programmes	17
1.11	Analytical Methods for quantification of acaricides in honey	18
	OBJECTIVES	19

CHAPTER 2: MATERIALS AND METHODS

2.1	Sampling	20
2.1.1	Samples collection for present study	20
2.1.2	Apiaries workers perception	23
2.1.3	Description of sampling sites	23
2.1.4	Sample pretreatment and Physicochemical analysis	29
2.2	Optimization of extraction procedures and analytical methods	30
2.2.1	Reference materials, reagents and solutions	30
2.2.2	Extraction and cleanup equipment	31
2.2.3	Pesticides extraction procedures from honey	31
	2.2.3 (i) Pesticides extraction by QuEChERS method	31
	2.2.3(ii) Pesticides extraction by SPE	33
2.2.4	Preparation of standard solutions	35
2.2.5	Preparation of Reagent, matrix blank and Matrix matched calibration	35
	standards	
2.2.6	Quantitative Pesticide Analysis	36
	2.2.6 (i) Pesticides identification and quantification by GC-ECD	36
	2.2.6 (ii) Pesticides identification and confirmations by GC/MS Analysis	37
2.2.7	Method Optimization and validation	40
2.3	Application to real samples	41
2.4	Statistical Analysis	41

CHAPTER 3: RESULTS AND DISCUSSIONS

3.1	Physicochemical analysis of honey	42
3.2	Optimization of extraction/cleanup procedure	49
3.3	Optimization and validation of GC-ECD parameters	52
	3.3.1 Linear dynamic range, precision and sensitivity	54
	3.3.2 Method reproducibility and robustness	55
3.4	Optimization and validation of GC-MSD parameters	55
	3.4.1 Spectral interferences/Matrix Effect	58
	3.4.2 Linear dynamic range, precision and sensitivity	59
	3.4.3 Spiked recoveries and Reproducibility	59
	3.4.4 Repeatability (intra-day and inter-day repeatability)	60
3.5	Apiaries workers perception	61
3.6	Analysis of real samples	63
	3.6.1 Distribution of selected acaricides in honey	63
	3.6.2 Sources of acaricides in honey	66
3.7	Health Implications of pesticide residues in honey	66
CON	CONCLUSIONS AND RECOMMENDATIONS	
REFERENCES		69

LIST OF FIGURES

Figure1.	Sources of direct and indirect contamination of pesticides in honey	7
Figure2.	Study area map showing geographical positions of samples	21
Figure3.	Flow chart showing Extraction procedure using QuEChERS in	32
	honey sample	
Figure4.	Flow chart showing Extraction procedure using SPE manifold in	34
	honey sample	
Figure5.	Chemical structures of selected acaricides	38
Figure6a.	Moisture level of honey from different geographical regions of	45
	Punjab and KP	
Figure6b.	pH of honey from different geographical regions of Punjab and KP	46
Figure6c.	Electrical conductivity of honey from different geographical regions	46
	of Punjab and KP	
Figure6d.	Total sugar levels of honey from different geographical regions of	47
	Punjab and KP	
Figure6e.	Sucrose content of honey from different geographical regions of	47
	Punjab and KP	
Figure6f.	Acidity of honey from different geographical regions of Punjab and	48
	КР	
Figure7.	Comparison of extraction efficiency of two selected methods spiked	50

at 0.8 mg kg¹⁻ levels

- Figure8. Comparative evaluation of matrix interference in chromatograms 51 response of honey by GC-MSD
- Figure 9. GC- μ ECD chromatograms of a (a) standard mixture solution in ethyl 53 acetate at 0.05 μ g mL¹⁻ (b) blank multi floral honey sample and (c) multi floral honey sample fortified at 0.05 μ g g¹⁻
- Figure 10. GC-MSD chromatograms of a (a) standard mixture solution in ethyl 57 acetate at 0.8 μ g mL¹⁻ (b) multi floral honey sample fortified at 0.8 μ g g¹⁻ (c) overlay of a and b
- Figure 11. Matrix effect of mirex in multi floral honey sample spiked at 0.8 58 $\mu g g^{1-}$

LIST OF TABLES

Table 1.	Composition of honey	2
Table 2.	Honey producing areas in Pakistan	3
Table 3.	Sources of contaminants in honey	5
Table 4.	Commercial names, common names, usage type, chemical class and	11
	toxicity classification of acaricides	
Table 5.	Floral sources for present honey sample collection	22
Table 6.	SIM program used to analyze and confirm selected acaricides in	39
	honey by GC-MSD	
Table 7.	Physicochemical properties of honey from different floral sources of	48
	Punjab and KP	
Table 8.	Extraction efficiency of extraction/cleanup methods analyzed by	49
	GC-µECD	
Table 9.	Average recovery (%), $n = 3$; RSD (%) obtained by SPE extraction	52
	of Honey analyzed by GC-µECD	
Table 10.	Validation parameters for analysis of a caricides by GC- μ ECD	54
Table 11.	Validation parameters (Linearity, Calibration Data) for analysis of	56
	acaricides by GC-MSD	
Table 12.	Recovery of the studied pesticides from honey samples (Mean \pm	60
	RSD, %) by GC-MSD	

Table 13.	Repeatability of the studied acaricides by GC-MSD	61
Table 14.	Concentration ranges of pesticide residues detected in honey	64
	samples	
Table 15.	Distribution of acaricides residues detected in honey samples	65
	collected from apiaries in 16 sampling sites of KP and Punjab	