SOLID WASTE MANAGEMENT PLAN FOR SELECTED SECTORS OF ISLAMABAD USING GIS TECHNIQUES

By

NAHEED FATIMA

Department of Earth and Environmental Sciences Bahria University, Islamabad

SOLID WASTE MANAGEMENT PLAN FOR SELECTED SECTORS OF ISLAMABAD USING GIS TECHNIQUES

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of MS in Environmental Policy and Management

NAHEED FATIMA

Department of Earth and Environmental Sciences
Bahria University, Islamabad

ABSTRACT

Solid waste is one of the most visible and pressing urban environmental problems in both developed and developing countries. Urbanization, demographic growth and economic development all contribute to the generation of waste, which overloads the capacities (budget, personnel and infrastructure) of the local authorities. If solid waste is not managed properly, it could have effect on health and environment. Geographical Information System is a latest tool that provides spatial and non spatial data in so many areas for better planning and decision making. In this study GIS tool was used to monitor existing solid waste system in the selected sectors (F-6, F-7, G-6 and G-7) of Islamabad for relocation and proper management plan.

Waste generation is higher than the carry capacity of waste bins in sector G. There are 15 extra trolly and 7 skips in sector F-6 that is relocated to sector G-6 and G-7 on the basis of sensitivity like school, hospitals and markets. There are 46 trolly that have been reallocated within the sector F-6 according to the buffer analysis of sensitive areas and waste generation pattern.

In sector F-7 there are 10 extra trolly and 4 skips, proposed for relocation in other sectors. There are 98 trolly placed in the sector G-6 with no skip. The waste generation in this sector is high so by using the GIS tool 65 trolly and 5 skips were relocated against the requirement of 79 trolly and 6 skips.

There are only 23 trolly with 20 skip were placed in sector G-7 which is the highest waste generating sector among the selected sectors, so on the basis of analysis the required number of trolly is 224 and 14 skips. By using GIS tool 90 trolly and 14 skip has reallocated within the sector G-7 against the waste generation and population density.

ACKNOWLEDGMENT

First of all, I owe great to Almighty Allah, His blessing motivated me and given me strength and courage for the completion of my thesis. I would like to thanks Prof. Dr. Sher Jamal, my supervisor for his constant guidance throughout my research to overcome all issues. He always encouraged me to continue my efforts to complete my research to achieve the desired results.

My gratitude also goes to Sir Khubaib Abuzar, Assiatant Professor/GIS Expert my co supervisor, giving me a great technical knowledge about how to utilize latest and modern tool GIS for better planning and decision making for the solid waste management. I am very grateful to him for being so kind and his constant guidance throughout my research work support me a lot. I would also like to thanks Sir Asif Javed for his guidance and specific help to carry out my research work. I am also grateful to Dr. Muhammad Zafar HoD Earth & Environmental Sciences Department and all the faculty members for giving their valuable commnets for improving my research work.

I would also like to thank Mr.Mustafa for providing me the maps and his guidance. I am also thankful to Mr. Ikidar, chief sanitary officer CDA, for his cooperation and his valuable data sharing regarding to my thesis.

I am grateful to all my friends specially Mahpara Raza and Tahir Naeem for their friendly and moral help during my research work.

And of course I would like to pay my whole heartedly gratitude to my beloved family who always support me throughout my MS coarse work and constantly strengthen me to complete my research work.

CONTENT

		Page
ABST	ГКАСТ	i
AKN	OWLEDGMENT	ii
CON	TENTS	iii
APPE	ENDICES	vii
FIGU	TRES	viii
TABI	LES	ix
ABBI	REVIATION	X
	CHAPTER 1	
	INTRODUCTION	
1.1	Background	1
1.2	Objective	3
1.3	Scope of study	3
	CHAPTER 2	
	LITERATURE REVIEW	
2.1	General	4
2.2	Integrated solid waste management system	4
2.3	Waste characterization	5
2.4	GIS application in SWM	5
2.5	ISWM in Developed countries	7
2.5.1	Solid waste generation and characteristics	8
		O

2.5.2	Solid waste management practices	9
2.6	Current status of SWM in developing countries	10
2.6.1	Collection and transport	11
2.6.2	Processing and Disposal of MSW	12
2.6.3	Existing problems in MSW management	13
2.7	Status of SWM in Pakistan	14
2.7.1	Management practices in major cities	14
2.7.2	Existing legal framework and institutional mechanism	15
	CHAPTER 3	
	METHODOLOGY	
3.1	Collection of Data	17
3.1.1	Maps and Spatial Data of study area	18
3.1.2	Land use data	19
3.1.3	Population Data	20
3.1.4	Waste bin location data	20
3.1.5	Waste Amount	20
3.1.6	Analysis for stationary container system	20
3.1.7	Analysis of haul container system	23
3.2	GIS workflow model	26
3.2.1	Primary data	27
3.3	Analysis	27
3.3.1	Inconvenience due to waste bin proximity	27
3.3.2	Convenient distance to all users	28

3.3.3	Reallocation of waste bins	28
3.3.4	Allocation of new waste bins	28
	CHAPTER 4	
	RESULTS AND DISCUSSION	
4.	Results	29
4.1.1	Population Estimation	30
4.1.2	Waste generation estimation	29
4.1.3	Quantity, type and location of collection bins	30
4.1.4	Manual handling of the waste	30
4.1.5	Comparison of waste generation to the carrying capacity of waste bins	30
4.1.6	Quantity and type of vehicle available	34
4. 1.7	Transportation availability for each sector	34
4.1.8	Analysis of stationery container system	35
4.1.9	Analysis of haul container system	37
4.2	Model implementation on case study data and results	38
4.2.1	Analysis on Waste bins within close proximity of sensitive buildings	38
4.2.2	Analysis on Convenient bin proximity distance to all users	41
4.2.3	Waste bins within close proximity of Recreational areas	44
4.2.4	Allocation of new and Reallocation of existing bins	46
4.3	Discussion	57

CHAPTER 5

CONCLUSION AND RECOMMENDATION

REFERENCES		65
5.2	Recommendation	63
5.1.	Conclusion	60

APPENDICES

		Page
Appendix I.	Location of waste bins	70
Appendix II.	Comparison of waste generation to the carrying capacity of waste bins	80
Appendix III.	Analysis of Stationery and Haul container system	88

FIGURES

		Page
Figure 1.	Breakdown of US municipal solid waste management practices	10
Figure 3.1	Methodology workflow	15
Figure 3.2	Satellite Image used as base map for the study	17
Figure 3.3	GIS work flow model	25
Figure 4.1	Population estimation (2011)	29
Figure 4.2	Waste Generation (2011)	30
Figure 4.3	Comparison between waste generation and carrying capacity of waste b	ins 33
Figure 4.4	Waste bins within close proximity of sensitive buildings	40
Figure 4.5	Areas which do not have waste bin (Trolly) within a distance of 100m	42
Figure 4.6	Areas which do not have waste bin (Skip) within a distance of 300m	43
Figure 4.7	Waste bins within close proximity of Recreational areas	45
Figure 4.8	Reallocation and Allocation of new Trolly and skips in Sector F-6	48
Figure 4.9	Reallocation and Allocation of new Trolly and skips in Sector F-7	51
Figure 4.10	Reallocation and Allocation of new Trolly and skips in Sector G-6	53
Figure 4.11	Reallocation and Allocation of new Trolly and Skips in Sector G-7	56

TABLES

	Page
Table 1. Comparison between waste generation and carrying capacity of waste bin	s 32
Table 2. Type of vehicle for city	34
Table 3. Type of vehicle for each sector	35
Table 4. Analysis of stationery container system	36
Table 5. Analysis of haul container system	37

ABBREVIATIONS

SWM Solid waste management

ISWM Integrated solid waste management

MSW Municipal solid waste

EPA Environment protection agency

HDPE High density polyethylene

PEPA Pakistan environmental protection act

P&D Departments Planning and development department

TMAs Town municipal authority

CDA Capital development authority

GIS Geographic information system