
Appl Intell (2014) 40:525–535
DOI 10.1007/s10489-013-0475-z

Combining pre-retrieval query quality predictors using genetic
programming

Shariq Bashir

Published online: 21 September 2013
© Springer Science+Business Media New York 2013

Abstract Predicting the effectiveness of queries plays an
important role in information retrieval. In recent years, a
number of methods are proposed for this task, however,
there has been little work done on combining multiple pre-
dictors. Previous studies on combining multiple predictors
rely on non-backtracking based machine learning methods.
These studies show minor improvement over single predic-
tors due to the limitation of non-backtracking. This paper
discusses work on using machine learning to automatically
generate an effective predictors’ combination for query per-
formance prediction. This task is referred to as—learning to
predict for query performance prediction in the field. In this
paper, a learning method, PredGP, is presented to address
this task. PredGP employs genetic programming to learn a
predictor by combining various pre-retrieval predictors. The
proposed method is evaluated using the TREC Chemical
Prior-Art Retrieval Task dataset and found to be significantly
better than single predictors.

Keywords Intelligent information retrieval · Query
performance prediction · Pre-retrieval predictors · Learning
to rank · Genetic programming

1 Introduction

In a typical information retrieval process users issue a query
and retrieval systems return the answer set in the form of
ranked list. Users then traverse the ranked list and exam-
ine whether the returned answer set satisfy their search task.

S. Bashir (B)
Center for Science and Engineering, New York University
Abu Dhabi, Musaffah, Abu Dhabi, United Arab Emirates
e-mail: shariq.bashir@nyu.edu

If the returned answer set does not fulfill their search task,
users then rephrase or modify the query in order to improve
the effectiveness of search. This is a manual way of pre-
dicting the effectiveness of a query and requires a lot of
time in order to traverse a long returned answer set. Addi-
tionally, this increases the burden on users. Query perfor-
mance prediction (QPP) is a technique in information re-
trieval (IR) for automatically predicting the effectiveness of
queries [7, 37, 43]. QPP is useful for both users and system
point of view. For users, it can provide feedback about the
effectiveness of query, and users then can rephrase the query
in order to improve its effectiveness. Whereas, retrieval sys-
tems can utilize QPP mechanism for invoking alternative re-
trieval strategies such as query expansion, diversity retrieval,
or reduction of terms in long queries for increasing the ef-
fectiveness of low quality queries [16].

In recent years, several techniques are proposed for pre-
dicting the quality of queries [7, 17, 19, 32, 37, 41, 43].
Despite the numerous methods proposed, little research has
been performed on combining QPP predictors. Previous ap-
proaches on combining multiple predictors rely on classifi-
cation (decision trees) techniques [39] or regression mod-
els [23]. The prediction accuracy of these approaches is
not significant. This is because, these approaches are non-
backtracking and easily trapped into local maximum as
finding the optimal combination of predictors for a spe-
cific training-set is NP-complete. In order to find the opti-
mal function of predictors’ combination, a learning method,
PredGP, based on genetic programming is developed by us-
ing a set of pre-retrieval predictors [7, 17, 41]. Genetic pro-
gramming is efficient for searching large spaces because it
probes, in parallel, many points in the search space. The
advantage of this evolutionary approach is that it can help
in solving problems that are extremely complex where the
traditional algorithm is computationally infeasible. PredGP

mailto:shariq.bashir@nyu.edu

526 S. Bashir

represents a potential solution (i.e. query performance pre-
dictor) as an individual in a population of genetic program-
ming. The method evolves a population by applying genetic
operations, such as crossover and mutation, over a series of
generations. In each generation, a fitness function, modeled
on the basis of correlation between query performance pre-
dictors and effectiveness measure is exploited to evaluate the
performance (accuracy) of each individual in the population.
The evolution is supposed to eventually generate an individ-
ual with the best fitness as the optimal solution. We check
the effectiveness of PredGP on TREC Chemical Prior-Art
Retrieval Task dataset [25] and compared it with existing
well-known pre-retrieval predictors. We found a significant
increase in the accuracy of QPP with PredGP. This indicates
the usefulness of this approach.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews related work on QPP. Section 3 provides an
introduction about TREC Chemical Prior-Art Retrieval Task
dataset, query sets and retrieval models that we use for an-
alyzing the performance of query performance predictors.
Section 4 lists several pre-retrieval predictors that we use for
combining predictors. Section 5 presents performance anal-
ysis of pre-retrieval on TREC dataset. In Sect. 6 we combine
query performance predictor using genetic programming for
automatically evolving effective combination of predictors.
Finally, Sect. 7 briefly summarizes key lessons learned from
this study.

2 Related work

In recent years a considerable number of methods have been
proposed that attempt to provide an indication of a query
quality. These can be divided into three broad categories:
pre-retrieval predictors, post-retrieval predictors, and learn-
ing predictors.

Pre-retrieval predictors are search-independent predic-
tors in this sense that they rely on information that is avail-
able at indexing time and are, thus, independent of the
ranked list of results [2, 7, 17, 19, 27, 28, 30, 41]. This
causes less overhead to the search system. The prediction
methodology in pre-retrieval predictors is solely based on
the collection statistics of query terms. The collection statis-
tics can be computed either directly from the document col-
lection or external source such as WordNet. Pre-retrieval
predictors can be divided into four different groups accord-
ing to the heuristic they exploit for making their prediction:
(a) specificity based predictors [7, 17, 41], (b) ambiguity
based predictors [7, 17, 41], (c) term relatedness based pre-
dictors [19, 27], and (d) ranking sensitivity based predictors
[2, 28, 30].

Post-retrieval predictors calculate queries quality
scores from ranked lists of queries results. Post-retrieval

predictors are computationally more expensive than pre-
retrieval predictors, in this sense, they need to process
queries at least once before a prediction can be made [43].
However using this additional computation is fruitful as it
provides additional information for a query and this is useful
in order to increase the accuracy of prediction. Post-retrieval
predictors can be categorized into the following four classes.
The algorithms in the first class change the query and con-
sider the differences in the respective ranked lists of results
[37, 39, 43]. The algorithms in the second class perturb the
documents of the initially retrieved result list and consider
the stability of the ranking [9, 34, 42]. The algorithms in the
third class perturb the retrieval approach and consider the di-
versity of the ranked list of results [1, 3, 35]. The algorithms
in the fourth class utilize web resources in order to drive the
estimate of prediction [5, 21, 24].

Learning predictors incorporate a variety of statistical
regression [23] or classification methods [39], such as deci-
sion tree or random forest, to train on labeled examples of
easy and difficult queries. The learned estimator is then used
to predict the difficulty of previously unseen queries. These
learning predictors have shown somewhat better correlation
with system effectiveness than single predictors, however,
these approaches can easily trap into local maximum as the
machine learning techniques used in these approaches are
non-backtracking.

3 Dataset

The document collection used to test the efficiency of the
proposed method is the TREC Chemical Prior-Art (PA)
Retrieval Task collection [25]. For all the documents and
queries, the stop-words are removed using a standard list
and the Porter’s stemming algorithm is applied. The PA task
consisted of 1,000 topic queries that are the full-text patent
documents (i.e., consisting of at least claims and abstract
or description) taken from both the European Patent Of-
fice (EPO) and the US Patent Office (USPTO). The goal of
searching a patent database for the prior-art search task is to
find all previously published related patents on a given topic
[14, 25, 26]. It is a common task for patent examiners and
attorneys to decide whether a new patent application is novel
or contains technical conflicts with some already patented
invention. They collect all related patents and report them in
a search report. We use these reports as relevance judgments.
Next, we apply a standard approach for query generation in
the patent retrieval domain. From each topic, we select only
the claim section because it is regarded as being the most
representative piece of text, characterizing the scope of in-
vention well due to the rules of the patent system worldwide
as done also in [14, 20, 26, 33]. In order to build the queries
from the claim sections, we first sort all the terms in the

Combining pre-retrieval query quality predictors using genetic programming 527

claim sections on the basis of their increasing term frequen-
cies. Next, we generate queries for performance analysis of
predictors by considering the following three cases.

• Short Query Set: Only the three most frequent terms of
claim sections are used.

• Medium Query Set: Only the 8 most frequent terms of
claim sections are used.

• Long Query Set: Only the 20 most frequent terms of
claim sections are used.

We run experiments for the three types of queries to
check the impact of query length on the effectiveness of
the predictors. For each query set, 33 % of total queries are
used for training while the rest are used for testing the ef-
fectiveness of the prediction function. We use the following
state-of-the-art retrieval models in order to analyze the per-
formance of predictors.

• tfidf: The tfidf (term frequency inverse document fre-
quency) is a retrieval model often used in information
retrieval. It is a statistical measure used to evaluate how
important a query terms is to a document. The importance
increases proportionally to the number of times a term ap-
pears in the document but is offset by the frequency of the
term in the collection. The standard tfidf retrieval model
is described as follow:

tfidf (d, q) =
∑

t∈q

tf t,d

|d| log
|D|
df t

(1)

tf t,d is the term frequency of query term t in d , and |D|
is the total number of documents in the collection. df t

represents the total number of documents containing t .
• BM25: Okapi BM25 arguably is one of the most impor-

tant and widely used information retrieval model. It is a
probabilistic function and nonlinear combination of three
key attributes of a document: term frequency tt,d , doc-
ument frequency df t , and the document length |d|. The
effectiveness of BM25 is controlled by two parameters
k and b. These parameters control the contributions of
term frequency and document length. If k = 0, the func-
tion reduces to 1 and the relevance scores of documents
are calculated solely based on the occurrences of query
terms across the collection only. The large value of k

makes the function nearly linear in tf t,d . Typically k is
used with k = 2.0. This demonstrates the nonlinear con-
tribution of tf t,d to the final document relevance scores.
The parameter b controls the length normalization. It is
set between 0 and 1. Large values of b (close to 1) sim-
ply make high normalization, thus short documents are
more favored over long documents. The values are small
or b approaches to zero, then the effect of normaliza-
tion becomes small, and long documents are more favored
over short documents due to the their large absolute term

frequencies. We used the following standard function of
BM25 proposed by [31]:

BM25(d, q) =
∑

t∈q

log
|D| − df t + 0.5

df t + 0.5

× tf t,d (k + 1)

tf t,d + k(1 − b + b
|d|
|d|)

(2)

|d| is the average document length in the collection from
which the documents are drawn. k and b are two parame-
ters, and they are used with k = 2.0 and b = 0.75.

• Language Model with Term Smoothing
Language model tries to estimate the relevance of the

document by estimating the probabilities of terms in the
document. The terms are assumed to occur independently,
and the probability is the product of the individual query’s
terms given the document model Md of document d :

P(q|Md) =
∏

t∈q

P (t |Md) (3)

P(t |Md) = tf t,d

|d| (4)

P(t |Md) is the probability of term t occurring in the col-
lection (

∑
d∈D tf t,d/

∑
d∈D |d|).

The overall similarity score for the query and the doc-
ument could be zero if some of the query terms do not
occur in the document. However, it is not sensible to rule
out a document because it is missing a single or a few
terms. For dealing with this, language models make use
of smoothing to balance the probability mass between
the occurrences of terms present in documents, and the
terms not found in the documents. Although there exists
many variations of term smoothing, however, Dirichlet
(Bayesian) Smoothing (DirS) is widely used for compar-
ison [40].

DirS makes smoothing dependent on the document
length. Since long documents allow us to estimate the
language model more accurately, this technique smoothes
them less, which is done with the help of a parameter μ.
Since the value of μ is added in the document length,
small values of μ retrieve less long documents. If the μ

is used with large values, then the distinction for differ-
ence between document lengths becomes less extreme,
and long documents are more favored over short docu-
ments. Again, this favoritism mostly occurs in case of
long boolean OR queries.

P(t |Md) = tf t,d + μP(t |D)

|d| + μ
(5)

According to [40] suggestion, we use the μ with 2,000.

528 S. Bashir

4 Pre-retrieval predictors

This section outlines several individual pre-retrieval predic-
tors which model the notion of predicting the quality of
queries.

1. AvIDF: AvIDF determines the query quality on the ba-
sis of specificity of a query, relying on the average of
the inverse document frequency (idf) of the query terms.
A term that occurs in many documents can be expected
to have a high term frequency in the collection; thus, de-
creasing the specificity of a query [18].

AvIDF = 1

|q|
∑

t∈q

[
log

|D|
df t

]
(6)

2. AvICTF: Instead of using idf, AvICTF relies on collec-
tion frequencies of query terms for calculating the speci-
ficity of a query [18].

AvICTF = 1

|q|
∑

t∈q

[
log

|V |
cft

]
(7)

|V | represents the set of distinct terms of the collection,
and cft is the total term count of t in collection D.

3. Simplified Query Clarity (SCS): Query clarity refers to
the specialty/ambiguity of a query. According to [7], the
clarity (or on the contrary, the ambiguity) of a query is an
intrinsic feature of a query, which has an important im-
pact on the effectiveness of retrieval models. Their pro-
posed clarity score is based on the sum of the Kullback
Leibler divergence of the query model from the collec-
tion model, and this involves computation of relevance
scores for the query model, which is time-consuming. To
avoid this expensive computation, [18] proposed a sim-
plified clarity score as a comparable pre-retrieval perfor-
mance predictor. It is calculated as:

SumSCS =
∑

t∈q

1

|q| log2

1
|q|
cft

|V |
(8)

4. Sum of Collection Query Similarity (SumSCQ): This
query quality predictor is based on the similarity between
the collection and a query [41]. The authors argue that
a query that is similar to the collection as a whole is
more likely to have higher effectiveness, since the sim-
ilarity is an indicator of whether documents answering
the information need are contained in the collection. [41]
used term frequency and inverse document frequency as
evidence for checking the similarity between the query
and the collection. As the query score increases with
increased collection term frequency and increased in-
verse document frequency, terms that appear in few doc-
uments many times are favored. Those terms can be seen

as highly specific, as they occur in relatively few docu-
ments, while at the same time, they occur often enough
to be important to the query:

SumSCQ =
∑

t∈q

(
1 · log(cft) · log

(
1 + |D|

df t

))
(9)

5. Average of Collection Query Similarity (AvgSCQ):
AvSCQ is the average SCQ similarity over all query
terms:

AvgSCQ = 1

|q|
∑

t∈q

(
1 · log(cft) · log

(
1 + |D|

df t

))
(10)

6. Maximum of Collection Query Similarity (MaxSCQ):
MaxSCQ relies on the maximum SCQ collection query
similarity score over all query terms.

7. Sum of Term Weight Variability (SumVAR): SumVAR
exploits the distribution of term weights across the col-
lection [41]. If the term weights across all documents
containing query’s term t are similar, there is little evi-
dence for a retrieval model on how to rank those docu-
ments given t , and thus different retrieval algorithms are
likely to produce widely different rankings. Conversely,
if the term weights differ widely across the collection,
ranking becomes easier and different retrieval models are
expected to produce similar rankings. This predictor is
calculated as follows:

SumVAR =
∑

t∈q

√√√√ 1

df t

∑

d∈Dt

(wt,d − ˆwt,d)2 (11)

Dt represents the set of all documents having term t . wt,d

is the term weight of t within document d and it is based
on tfidf weighting, ˆwt,d is the average weight of wt,d over
all documents containing t .

8. Average of Term Weight Variability (AvgVAR):
AvgVAR is the average VAR similarity over all query
terms:

AvgVAR = 1

|q|
∑

t∈q

√√√√ 1

df t

∑

d∈Dt

(wt,d − ˆwt,d)2 (12)

9. Maximum of Term Weight Variability (MaxVAR):
MaxVAR relies on the maximum V AR similarity over all
query terms.

5 Experimental analysis of pre-retrieval predictors

Query performance prediction aims to identify whether a set
of search results is likely to contain useful answers. The es-
tablished information retrieval methodology for this type of

Combining pre-retrieval query quality predictors using genetic programming 529

investigation involves testing the performance of a predictor
across a set of queries that are run on a collection of docu-
ments. The performance of the predictor is measured by cal-
culating the correlation between the predicted performance
levels with retrieval model effectiveness.

In the query performance prediction literature, Spear-
man’s rank order correlation is widely used for analyzing
correlation (relationship) between predictors and retrieval
models effectiveness. The correlation score close to +1 or
close to −1 indicates that there exists a high relationship be-
tween the predictor and retrieval model’s effectiveness. This
indicates that on the basis of predictor it is possible to ac-
curately predict the quality of query. When the correlation
score is close to 0 then this means that there exists no corre-
lation between the predictor and the retrieval model’s effec-
tiveness. Thus on the basis of given predictor, it is difficult
to predict the quality of queries.

Information retrieval experimentation has a strong under-
lying experimental methodology as used for example in the
ongoing series of Text REtrieval Conferences (TREC): a set
of queries is run on a static collection of documents, with
each query returning a list of answer resources. Humans as-
sess the relevance of each document-query combination, and
from this a variety of system effectiveness metrics can be
calculated.

• Recall: Recall cares about all relevant (judged) docu-
ments. It is the ratio of the number of retrieved relevant
documents relative to the total number of documents in
the collection that are desired to retrieve.

Recall = tp

tp + fn
(13)

tp represents the total number of relevant documents re-
trieved. fn represents the false negative, the documents
that are relevant but could not retrieve.

• Precision: Precision is the ratio of the number of retrieved
relevant documents relative to the total number of re-
trieved documents. Precision measures the quality of the
rank lists. However, since it does not consider the total
number of relevant documents, therefore a result list con-
sisting of just few retrieved and relevant documents might
provide high precision than a large result list with many
relevant documents.

Precision = tp

tp + fp
(14)

fp represents the false positive, the documents that are re-
trieve but are not relevant.

Recall and precision are always used with rank cutoff
levels. In our experiments we measured the Recall with
Recall@30, and Precision with Precision@30 rank cutoff
levels.

• Mean Average Precision (MAP): Precision and Recall
are not sensitive to the ranking order of documents (i.e.,
they do not consider how efficiently different retrieval
models retrieve the relevant documents at the top ranked
positions). Average precision cares this factor by averag-
ing the precision values obtained after each relevant doc-
ument found. Thus a retrieval model that ranks a large
number of relevant documents at the top ranked positions
would provide good average precision. It is calculated us-
ing the following equation.

AveP(q) =
∑

d∈Dq
(Precision@kdg(q)) · rel(d)

tp + fn
(15)

Dq represents the set of retrieved documents of a query q ,
and kdq is the rank of a document d in Dq . rel(d) re-
turns 1, if d is a relevant judged document of q , other-
wise 0. The mean average precision (MAP) is used for
the average precision figures over a number of different
queries.

MAP =
∑

q∈Q AveP(q)

|Q| (16)

Tables 1, 2, and 3 show the performance of pre-retrieval
predictors with tfidf, BM25 and DirS on three query sets.
Overall, it is clear that the length of query creates a strong
effect on the performance of all predictors. On long queries
the correlations of all predictors are low. This is because,
long queries have many verbose terms and these drift the
accuracy of predictors. The results show that the similar-
ity between a query and the collection (SCQ) can provide
useful information for the prediction of how well a query
will perform. The most effective among the three collec-
tion based predictors is MaxSCQ, which considers the align-
ment between the most similar query term and the col-
lection overall. If we only compare AvICTF and AvIDF,
then across all query sets, AvIDF has slightly better perfor-
mance than AvICTF. The only difference between AvIDF
and AvICTF is doccount and termcount. AvICTF relies on
termcount and AvIDF relies on doccount. On the basis of
results, we can conclude that docount is somewhat more re-
liable than termcount. The performance of SCS is compara-
ble to AvICTF, but always slightly worse than AvIDF. Pre-
dictors based on term weight variability (SumVAR, AvgVAR
and MaxVAR) have overall good performance on different
query sets.

6 Genetic programming based query performance
prediction (PredGP)

Since the information represented by different search fea-
tures is complementary, it is natural to combine features.

530 S. Bashir

Table 1 Performance of pre-retrieval predictors with tfidf, BM25, and DirS on three query sets. The effectiveness scores of queries are calculated
with Recall@30

Pre-retrieval
predictors

Short queries Medium queries Long queries

tfidf BM25 DirS tfidf BM25 DirS tfidf BM25 DirS

SCS 0.345 0.271 0.279 0.235 0.210 0.189 0.171 0.214 0.163

SumSCQ �0.380 0.315 0.309 0.285 0.210 0.174 �0.222 0.180 0.130

AvgSCQ 0.372 0.306 0.030 0.276 0.203 0.165 0.221 0.175 0.122

MaxSCQ �0.380 0.315 0.309 0.285 0.210 0.174 �0.222 0.180 0.130

SumVAR 0.359 �0.335 0.325 0.274 0.253 0.216 0.216 0.195 0.166

AvgVAR 0.361 �0.336 0.326 0.279 0.259 0.216 0.216 0.195 0.166

MaxVAR 0.370 0.344 �0.335 �0.292 �0.269 �0.230 0.217 0.210 �0.175

AvICTF 0.355 0.288 0.294 0.228 0.212 0.187 0.177 �0.226 0.172

AvIDF 0.371 0.305 0.300 0.253 0.205 0.161 0.198 0.202 0.142

Table 2 Performance of pre-retrieval predictors with tfidf, BM25, and DirS on three query sets. The effectiveness scores of queries are calculated
with Precision@30

Pre-retrieval
predictors

Short queries Medium queries Long queries

tfidf BM25 DirS tfidf BM25 DirS tfidf BM25 DirS

SCS 0.336 0.278 0.162 0.274 0.206 0.159 0.287 0.184 0.130

SumSCQ 0.398 �0.353 �0.249 �0.309 0.239 �0.204 �0.311 0.211 �0.179

AvgSCQ 0.341 0.339 0.245 0.301 0.231 0.200 0.303 0.201 0.172

MaxSCQ 0.398 �0.353 �0.249 �0.309 0.239 �0.204 �0.311 0.211 �0.179

SumVAR 0.284 0.288 0.208 0.297 0.233 0.164 0.296 0.205 0.153

AvgVAR 0.287 0.293 0.208 0.296 0.236 0.164 0.295 0.209 0.153

MaxVAR 0.346 0.310 0.212 0.303 �0.247 0.168 0.303 �0.222 0.159

AvICTF 0.393 0.285 0.166 0.282 0.209 0.168 0.295 0.185 0.132

AvIDF �0.404 0.327 0.213 0.303 0.233 0.202 0.309 0.200 0.160

Table 3 Performance of pre-retrieval predictors with tfidf, BM25, and DirS on three query sets. The effectiveness scores of queries are calculated
with MAP

Pre-retrieval
predictors

Short queries Medium queries Long queries

tfidf BM25 DirS tfidf BM25 DirS tfidf BM25 DirS

SCS 0.315 0.285 0.288 0.268 0.216 0.194 0.173 0.209 0.156

SumSCQ 0.389 0.356 0.347 �0.358 0.264 0.231 �0.264 �0.233 0.176

AvgSCQ 0.387 0.352 0.344 0.352 0.260 0.225 0.263 0.222 0.176

MaxSCQ 0.389 0.356 0.347 �0.358 0.264 0.231 �0.264 �0.223 0.176

SumVAR 0.391 0.368 0.360 0.333 0.288 0.259 0.248 0.211 �0.187

AvgVAR 0.393 0.368 �0.361 0.339 0.293 0.263 0.248 0.211 �0.187

MaxVAR �0.396 �0.371 �0.362 0.350 �0.302 �0.275 0.249 0.212 �0.187

AvICTF 0.317 0.291 0.291 0.275 0.226 0.196 0.180 0.215 0.162

AvIDF 0.369 0.336 0.329 0.327 0.250 0.211 0.228 0.226 0.169

Among the possible feature combination techniques, genetic
programming (GP) based features combination is widely
used in IR for automatically evolving effective feature com-
bination. The use of GP in IR is not a new research idea. In
the past few years, there have been made several attempts on

evolving effective retrieval models using genetic program-
ming [4, 6, 8, 10–13, 29, 36, 38].

The learning process for evolving efficient combination
of predictors is formalized as follows. Given a query collec-
tion Q, predictors scores and effectiveness scores of queries,

Combining pre-retrieval query quality predictors using genetic programming 531

a feature extractor produces a vector of features that describe
the match between the effectiveness scores of queries and
the predictors scores of queries in Q. The range of features
that are used in this study includes a set of pre-retrieval pre-
dictors as described in Sect. 4. During the evaluation pro-
cess, GP tries to optimize a predictor combination f̂ such
that the correlation between the combination of predictors
and effectiveness scores could be maximized. Once all the
generations finish their processing the individual having the
highest correlation is returned as an output.

6.1 Features normalization

Formally, a feature fk is a pre-retrieval predictor. Before
starting the processing of GP a query-based normalization
on all features is performed in order to normalize all feature
values into a range of [0,1]. For a query q , the normalized
value of fk(q) is calculated by Eq. (17), where max(fk(q))

and min(fk(q)) are the maximum and minimum values of
fk(q) respectively for feature fk in Q.

fk(q) = fk(q) − min(fk(q))

max(fk(q)) − min(fk(q))
(17)

6.2 Genetic programming framework

Genetic programming is a branch of evolutionary comput-
ing. It helps to solve exhaustive search space problems with-
out requiring the user to specify the structure of the solution
in advance. There are two main steps in genetic program-
ming; (a) initial population creation, and (b) recombination
with the existing population to evolve better solutions. Gen-
erally, the initial population (generation) is created randomly
and it is modeled in the form of trees. Each tree represents
a solution, structured by several nodes. Nodes can be either
operators (functions) or operands (terminals). From the ini-
tial population recombination occurs to evolve better solu-
tions (next generation’s population). This is performed ei-
ther by a crossover or a mutation. In order to produce better
populations it is important to select better solutions from the
current population in a larger percentage. This selection is
done by a fitness function that measures how well an indi-
vidual performs in its environment. The process of recombi-
nation iterates until a predefined number of generations has
been created or no further improvements can be observed.
Some important parameters in GP are; (a) the population
size, (b) the number of generations, (c) the depth of tree,
(d) the function set, and (e) the terminal set.

The proposed GP based learning framework is summa-
rized as follows. An individual I of the current population
represents a combination of predictors. It is expressed as a
functional expression of three components: Sv (query qual-
ity predictors), Sc (constants), and Sop (operators). Sv is a
set of pre-retrieval predictors. Sc is a set of predefined real

numbers ranging from 0 to 1. Sop is a set of arithmetic op-
erators (+, /,∗). In the implementation, I is represented as
a binary tree structure, in which an internal node is an arith-
metic operator and a leaf node is a predictor. In experiments,
we explore the maximum depth of individuals up to 6 lev-
els. Furthermore, we perform experiments with up to 150
generations, and with 50 individuals per generation.

The evolution process works as follows. Individuals of
the initial population are produced randomly by a ramped
half-and-half method [22]. In this method, the individuals
are produced randomly. However, it ensures that half of the
individuals must not have all the branches of the maximum
tree depth. For the reproduction of new individuals for the
next generation, the top 10 % individuals of the current gen-
eration that exhibit minimum retrieval bias are moved to
the next generation without any modification. This is done
for the survival of the fittest individuals. Next, the remain-
ing population is produced 70 % by crossover and 30 %
by mutation. Parents for crossover are selected with the 5-
tournament selection approach. This removes any kind of
bias in the parents’ selection process. The 5-tournament se-
lection approach randomly selects a few individuals from
the previous generation and returns one individual (for the
mutation) or two individuals (for the crossover). Crossover
is applied on the parents by simply switching their sub-trees
to each other. The sub-trees for the crossover are also se-
lected randomly. In this process, two new individuals are
produced. In mutation, a mutant is created by randomly
choosing an internal node of the selected individual, and
then its whole sub-tree is replaced with a randomly gener-
ated tree. After the evolution ends it’s processing, the output
set O representing the best individuals are returned as a can-
didate solutions.

It is important to define a suitable fitness function for GP
to work. The fitness function should reward good individ-
uals and punish bad ones. We use Recall@30 as a fitness
function for analyzing the correlation between predictors’
combination and retrieval models effectiveness scores. We
consider the following facts in order to determine whether
the GP approach presented above can be utilized effectively
for evolving effective combination of predictors.

• The fittest (best) individual from each generation com-
puted on the training data. This allows one to verify
that the genetic programming method is functioning, as
well as indicating that some improvement over base-line-
retrieval models can be made.

• The average fitness for each generation can be examined
to further ensure that the system is functioning as desired;
a sharp initial rise is expected, after which average fitness
should slowly (but not monotonically) rise.

We compare the PredGP performance with two pre-
retrieval combination models. Both these models are non-

532 S. Bashir

Fig. 1 Prediction accuracy gained by PredGP on the basis of average fitness and best-fitness as the generations evolve

backtracking, therefore, we expect that PredGP would per-
form better than these models. The first model combines
pre-retrieval predictors using decision tree (DesTree) [23].
For this model we use minimum mean square error (MMSE)
using the Moore-Penrose pseudo-inverse method in order
to estimate the prediction error at each branch and learn-
ing decision tree [23]. The second model combines pre-
retrieval prediction using multiple linear regression (multi-
Regression) [16]. We trained both models on training dataset
with the help of open source Weka machine learning toolkit
[15], and test dataset is used for evaluating the performance
of both models. Weka does not have a mechanism for an-
alyzing the decision tree prediction accuracy using Moore-
Penrose pseudo-inverse. We implement this extension in or-
der train the DesTree as recommended in [23].

Figure 1 shows the improvement in prediction perfor-
mance that is gained by the fittest individual of each gener-
ation on three training datasets. As expected, performance
increases in a non-strictly monotonic manner as the gen-
erations evolve. Figure 1 also shows how the average fit-
ness improves as the generations evolve. Within the first

few generations, a large number of individuals yield only
nonsensical weights. This gives poor correlation between
predictors combinations and effectiveness scores of queries.
These individuals quickly die out, resulting in the dramatic
improvement on average fitness for the first few genera-
tions. Once the system stabilizes, average fitness rises very
slowly over the course of a large number of generations. Af-
ter all generations finished their execution, the fittest indi-
vidual (GP learning framework), having highest Spearman’s
rank correlation coefficient score, is used for performance
analysis on test datasets. Table 7 shows the fittest func-
tions that are evolved with GP on three training datasets.
Tables 4, 5, and 6 show the performance of PredGP on
test datasets with Recall@30, Precision@30, and MAP. If
we compare PredGP with single best pre-retrieval predic-
tor. Then PredGP achieves significant improvement with
Recall@30 = 58 %, Precision@30 = 49 %, and MAP =
43 % respectively. Two other predictor combination meth-
ods (multiRegression and DesTree) also achieve high im-
provement as compared to single pre-retrieval predictors.
However, due to better search space exploration, PredGP

Combining pre-retrieval query quality predictors using genetic programming 533

Table 4 Prediction performance of PredGP, multiRegression and DesTree on different query sets. The effectiveness scores of queries are calcu-
lated with Recall@30

Prediction
model

Short queries Medium queries Long queries

tfidf BM25 DirS tfidf BM25 DirS tfidf BM25 DirS

PredGP �0.493 �0.465 �0.463 �0.401 �0.414 �0.387 �0.373 �0.381 �0.384

multiRegression 0.421 0.406 0.426 0.321 0.367 0.349 0.295 0.335 0.346

DesTree 0.402 0.402 0.402 0.313 0.343 0.334 0.291 0.311 0.332

Table 5 Prediction performance of PredGP, multiRegression and DesTree on different query sets. The effectiveness scores of queries are calcu-
lated with Precision@30

Prediction
model

Short queries Medium queries Long queries

tfidf BM25 DirS tfidf BM25 DirS tfidf BM25 DirS

PredGP �0.506 �0.422 �0.437 �0.458 �0.370 �0.376 �0.373 �0.344 �0.293

multiRegression 0.430 0.375 0.399 0.394 0.303 0.326 0.301 0.285 0.246

DesTree 0.412 0.364 0.374 0.389 0.295 0.311 0.294 0.261 0.230

Table 6 Prediction performance of PredGP, multiRegression and DesTree on different query sets. The effectiveness scores of queries are calcu-
lated with MAP

Prediction
model

Short queries Medium queries Long queries

tfidf BM25 DirS tfidf BM25 DirS tfidf BM25 DirS

PredGP �0.488 �0.468 �0.461 �0.458 �0.419 �0.390 �0.385 �0.376 �0.367

multiRegression 0.416 0.394 0.434 0.383 0.367 0.369 0.303 0.321 0.321

DesTree 0.403 0.388 0.419 0.370 0.344 0.362 0.305 0.302 0.305

Table 7 Fittest individuals evolved with genetic programming for three training datasets

Query set Retrieval model

Short f̂ 1(q) =
(

(SCS + MaxSCQ) +
(

(SCS + 0.1)

(SCS + SCS
AvIDF
0.2)

+
(

(0.3 ∗ SumVAR) ∗ (SCS + 0.1)

(SCS + SCS
AvIDF)

)))

Medium f̂ 2(q) =
(((

AvgSCQ

0.8
∗ 0.6

)
+ (0.8 ∗ SCS)

)
+

((
AvICTF

SCS
+ MaxSCQ

AvIDF

)
+

(
AvgSCQ

SCS
∗ (AvIDF + SCS)

)))

Long f̂ 3(q) =
(((

AvICTF

SumVAR
+ SCS

)
+

(SumVAR
lBF

AvICTF
SumVAR

∗ 0.6

))
+

(MaxSCQ
AvIDF

AvgSCQ
SCS

+
AvICTF
SumVAR
MaxSCQ

SCS

))

performs significantly better than multiRegression and Des-
Tree. This shows the merit of evolving predictors combina-
tion using genetic programming.

7 Conclusion

In this paper, a learning method, PredGP, is proposed to ad-
dress the task of learning to predict the quality of queries.
PredGP employs genetic programming to learn an effective
prediction function by combining various pre-retrieval pre-
dictors. Experiments are conducted to evaluate the perfor-

mance of PredGP using TREC chemical prior-art retrieval
task dataset. Several single pre-retrieval predictors are com-
pared with PredGP. The results show that PredGP performs
significantly better than single pre-retrieval predictors.

There are still many open issues related to this research.
First is how to improve the performance of PredGP in case
of long queries, which are the type of queries that a search
system is expected to serve in case of professional search
(e.g. medical, patent or legal retrieval). One of the directions
we would like to consider is looking for additional features
that indicate the query difficulty but on the other hand do not
depend on the query length.

534 S. Bashir

Second main issue is the amount of training data for
evolving prediction function. There is much evidence in our
experiments that the quality of prediction is increased with
the number of training examples. There is need to investi-
gate how the training data for learning a prediction function
can be accumulated in automatic, or at least semi-automatic
manner.

References

1. Aslam JA, Pavlu V (2007) Query hardness estimation using
Jensen-Shannon divergence among multiple scoring functions. In:
Proceedings of the 29th European conference on IR research,
ECIR’07, pp 198–209

2. Banerjee S, Pedersen T (2003) Extended gloss overlaps as a mea-
sure of semantic relatedness. In: Proceedings of the 18th inter-
national joint conference on artificial intelligence, IJCAI’03, pp
805–810

3. Buckley C (2004) Topic prediction based on comparative retrieval
rankings. In: Proceedings of the 27th annual international ACM
SIGIR conference on research and development in information re-
trieval, SIGIR ’04, pp 506–507

4. Chen H (1995) Machine learning for information retrieval: neural
networks, symbolic learning, and genetic algorithms. J Am Soc
Inf Sci Technol 46(3):194–216

5. Collins-Thompson K, Bennett PN (2009) Estimating query per-
formance using class predictions. In: Proceedings of the 32nd in-
ternational ACM SIGIR conference on research and development
in information retrieval, SIGIR ’09, pp 672–673

6. Cordón O, Herrera-Viedma E, López-Pujalte C, Luque M, Zarco
C (2003) A review on the application of evolutionary computation
to information retrieval. Int J Approx Reason 34:241–264

7. Cronen-Townsend S, Zhou Y, Croft WB (2002) Predicting query
performance. In: Proceedings of the 25th annual international
ACM SIGIR conference on research and development in infor-
mation retrieval, SIGIR ’02, pp 299–306

8. Cummins R, O’Riordan C (2005) Evolving general term-
weighting schemes for information retrieval: tests on larger col-
lections. Artif Intell Rev 24(3–4):277–299

9. Diaz F (2007) Performance prediction using spatial autocorrela-
tion. In: Proceedings of the 30th annual international ACM SIGIR
conference on research and development in information retrieval,
SIGIR ’07, pp 583–590

10. Diaz-Aviles E, Nejdl W, Lars S-T (2009) Swarming to rank for
information retrieval. In: GECCO ’09, proceedings of the 11th an-
nual conference on genetic and evolutionary computation, New
York, NY, USA. ACM, New York, pp 9–16

11. Fan W, Fox EA, Pathak P, Wu H (2004) The effects of fitness func-
tions on genetic programming-based ranking discovery for web
search. J Am Soc Inf Sci Technol 55(7):628–636

12. Fan W, Gordon MD, Pathak P (2004) A generic ranking function
discovery framework by genetic programming for information re-
trieval. Inf Process Manag J 40(4):587–602

13. Fan W, Gordon MD, Pathak P (2005) Genetic programming-based
discovery of ranking functions for effective web search. J Manag
Inf Syst 21(4):37–56

14. Fujii A, Iwayama M, Kando N (2007) Introduction to the special
issue on patent processing. Inf Process Manag J 43(5):1149–1153

15. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Wit-
ten IH (2009) The weka data mining software: an update. ACM
SIGKDD Explor Newsl 11:10–18

16. Hauff C (2010) Predicting the effectiveness of queries and re-
trieval systems. Ph.D. Dissertation, University of Twente

17. He B, Ounis I (2004) Inferring query performance using pre-
retrieval predictors. In: SPIRE. Lecture notes in computer science.
Springer, Berlin, pp 43–54

18. He B, Ounis I (2006) Query performance prediction. Inf Syst J
31(7):585–594

19. He J, Larson M, De Rijke M (2008) Using coherence-based mea-
sures to predict query difficulty. In: Proceedings of the IR research,
30th European conference on advances in information retrieval,
ECIR’08, pp 689–694

20. Itoh H (2004) Patent retrieval experiments at ricoh. In: Proc. of
NTCIR ’04: NTCIR-4 workshop meeting

21. Jensen EC, Beitzel SM, Grossman D, Frieder O, Chowdhury A
(2005) Predicting query difficulty on the web by learning visual
clues. In: Proceedings of the 28th annual international ACM SI-
GIR conference on research and development in information re-
trieval, SIGIR ’05, pp 615–616

22. Koza JR (1992) A genetic approach to the truck backer upper
problem and the inter-twined spiral problem. In: Proceedings of
IJCNN international joint conference on neural networks, vol IV.
IEEE Press, New York, pp 310–318

23. Kwok KL (2005) An attempt to identify weakest and strongest
queries. In: Predicting query difficulty, SIGIR 2005 workshop
(2005)

24. Leskovec J, Dumais S, Horvitz E (2007) Web projections: learning
from contextual subgraphs of the web. In: Proceedings of the 16th
international conference on world wide web, WWW ’07, pp 471–
480

25. Lupu M, Huang J, Zhu J, Tait J (2009) TREC-CHEM: large scale
chemical information retrieval evaluation at trec. SIGIR Forum
43(2):63–70

26. Mase H, Matsubayashi T, Ogawa Y, Iwayama M, Oshio T (2005)
Proposal of two-stage patent retrieval method considering the
claim structure. ACM Trans Asian Lang Inf Process 4(2):190–206

27. Mothe J, Tanguy L (2005) Linguistic features to predict query
difficulty—a case study on previous trec campaigns. In: Predicting
query difficulty, SIGIR 2005 workshop

28. Patwardhan S, Pedersen T (2006) Using wordnet-based context
vectors to estimate the semantic relatedness of concepts. In: Pro-
ceedings of the EACL 2006 workshop making sense of sense—
bringing computational linguistics and psycholinguistics together,
pp 1–8

29. Pham MQN, Nguyen ML, Bach NX, Shimazu A (2012)
A learning-to-rank method for information updating task. Appl In-
tell 37:499–510

30. Rada R, Mili H, Bicknell E, Blettner M (1989) Development and
application of a metric on semantic nets. IEEE Trans Syst Man
Cybern 19(1):17–30

31. Robertson SE, Walker S (1994) Some simple effective approxima-
tions to the 2-Poisson model for probabilistic weighted retrieval.
In: SIGIR ’94: proceedings of the 17th annual international ACM
SIGIR conference on research and development in information re-
trieval, Dublin, Ireland, pp 232–241

32. Scholer F, Williams HE, Turpin A (2004) Query association surro-
gates for web search: research articles. J Am Soc Inf Sci Technol
55:637–650

33. Shinmori A, Okumura M, Marukawa Y, Iwayama M (2003) Patent
claim processing for readability: structure analysis and term ex-
planation. In: Proceedings of the ACL-2003 workshop on patent
corpus processing, vol 20, pp 56–65

34. Singhal A, Salton G, Buckley C (1995) Length normalization in
degraded text collections. In: Proceedings of fifth annual sympo-
sium on document analysis and information retrieval, pp 15–17

35. Takaku M, Oyama K, Aizawa A (2006) An analysis on topic fea-
tures and difficulties based on web navigational retrieval experi-
ments. In: Proceedings of the third Asia conference on information
retrieval technology, AIRS’06, pp 625–632

Combining pre-retrieval query quality predictors using genetic programming 535

36. Verberne S, van Halteren H, Theijssen D, Raaijmakers S, Boves L
(2011) Learning to rank for why-question answering. Inf Retr
14:107–132

37. Vinay V, Cox IJ, Milic-Frayling N, Wood K (2006) On ranking the
effectiveness of searches. In: Proceedings of the 29th annual inter-
national ACM SIGIR conference on research and development in
information retrieval, SIGIR ’06, pp 398–404

38. Vrajitoru D (1998) Crossover improvement for the genetic algo-
rithm in information retrieval. Inf Process Manag J 34(4):405–415

39. Yom-Tov E, Fine S, Carmel D, Darlow A (2005) Learning to es-
timate query difficulty: including applications to missing content
detection and distributed information retrieval. In: Proceedings of
the 28th annual international ACM SIGIR conference on research
and development in information retrieval, SIGIR ’05, pp 512–519

40. Zhai C (2002) Risk minimization and language modeling in text
retrieval. Ph.D. Thesis, Carnegie Mellon University

41. Zhao Y, Scholer F, Tsegay Y (2008) Effective pre-retrieval query
performance prediction using similarity and variability evidence.
In: Proceedings of the IR research, 30th European conference on
advances in information retrieval, ECIR’08, pp 52–64

42. Zhou Y, Croft WB (2006) Ranking robustness: a novel framework
to predict query performance. In: Proceedings of the 15th ACM
international conference on information and knowledge manage-
ment, CIKM ’06, pp 567–574

43. Zhou Y, Croft WB (2007) Query performance prediction in web
search environments. In: Proceedings of the 30th annual interna-

tional ACM SIGIR conference on research and development in
information retrieval, SIGIR ’07, pp 543–550

Shariq Bashir is currently work-
ing as a Postdoctoral Associate at
center of science and engineering,
New York University Abu Dhabi.
Before this, he was Assistant Pro-
fessor of computer science at Na-
tional University of Computer and
Emerging Science, Islamabad. He
is an approved Ph.D. supervisor for
the Higher Education Commission
(HEC) of Pakistan. He received his
Ph.D. in Computer Science from
Vienna University of Technology,
Austria in 2011. His research inter-

ests include information retrieval, unsupervised IR systems evaluation,
retrieval bias analysis, documents retrievability analysis, query expan-
sion, query performance prediction, learning to rank, opinion-based en-
tity ranking, decision support systems, expert systems and data mining.
He has published more than 30 research papers in leading international
conferences and journals of information retrieval and data mining do-
mains.

	Combining pre-retrieval query quality predictors using genetic programming
	Abstract
	Introduction
	Related work
	Dataset
	Pre-retrieval predictors
	Experimental analysis of pre-retrieval predictors
	Genetic programming based query performance prediction (PredGP)
	Features normalization
	Genetic programming framework

	Conclusion
	References

