
MCPSC: Memory Conservation Protocol for Secure
Communication in Wireless Sensor Networks

Suleman Awan *, M. Ali Rafique †
Department of Electronics & Telecommunications Engineering, Polytechnic University of Turin, Italy * †

Email: sulemanawan@gmail.com *, alirafique@hotmail.com †

Abstract—Wireless Sensor Networks (WSNs) are being used
everywhere around us whether it be a smart office or an
application related to environmental monitoring, healthcare,
surveillance, education and training. Most of the time such
application domains involve handling of sensitive data that would
require secure dissemination of information from sensor node
to the data collection point (target node). However, scarcity of
memory, battery life and computational power has always posed
a serious challenge to ensure secure communication in such
versatile application domains. In this paper we have proposed
an algorithm that establishes secure communication in WSNs
with memory conservation. Our proposed algorithm divides the
sensor nodes into two groups, strong nodes and weak nodes
based on their memory capacity. The algorithm itself utilizes
a hybrid cryptosystem; combination of public and private key
cryptography, where the exchange of an encrypted symmetric
key is done using public key cryptography.

Index Terms—Cryptosystem, Cryptography, Key management,
Memory conservation, Sensor, Security.

I. INTRODUCTION

A Wireless Sensor Network (WSN) is a network with the
set of inexpensive small form factor wireless devices that
organize themselves into a cooperative network. These tiny
sensor nodes are used to monitor the environmental conditions
like air pressure, temperature, humidity etc. Each sensor node
has the capacity of doing only limited processing but due
to their coordination in a big network with all other sensor
nodes, information can be propagated to more powerful nodes
(also known as sink). Unlike traditional wireless devices,
wireless sensor nodes do not need to communicate directly
with the nearest high-power control tower or base station,
but only with their local peers. Instead of relying on a pre-
deployed infrastructure, each individual sensor or actuator
becomes part of the overall infrastructure. A sensor node
might vary in size from that of a hand held device down
to the size of a grain of dust. The size and cost of sensor
nodes result in corresponding constraints on resources such
as energy, memory, computational speed and communications
bandwidth. Applications of wireless sensor networks are in
critical systems like hospitals, military, airports, home security
system and surveillance. Because of much limitations and
challenges that we face in WSN, classic security mechanism
should be avoided. It is therefore challenging to come up with
a new technique that addresses the issue while keeping in mind
the limitations of WSN. One important aspect of security is
to know which specific thing should be protected and how to
protect it. Sensor networks are vulnerable against external and

internal attacks due to their unique characteristics like open
area deployment, public communication channels, and limited
resources of WSN nodes, difficult monitoring and control of
actual state of the deployed nodes. Other than protection of
information from illegal use, disclosure, modification, destruc-
tion or unauthorized access, the three most important security
aspects are data confidentiality, integrity and availability [1].
In our proposed memory conservation algorithm for secure
handshake between sensor nodes, we opted for symmetric pair
wise keys scheme in wireless sensor network because of these
underlying reasons:
• Wireless sensor nodes are generally low powered and

symmetric key encryption uses less power.
• These nodes have limited memory and symmetric key

encryption uses rather less memory.
Moreover, symmetric key encryption is much faster than asym-
metric key encryption. It also prevents widespread message
security compromise. Many researchers have claimed that
symmetric key encryption could be the best choice for the
encryption of data keeping in view the physical constraints of
WSN nodes [2]. After selecting the symmetric key encryption,
the next step is to find out how we could establish the
key among the nodes [3]. A simple technique would be to
provide all nodes with the secret keys at the time of network
deployment. Once the network is deployed, we cannot add any
further nodes in the network. Moreover, we cannot apply such
technique to large networks due to scalability issues. However,
there is an alternative way to exchange keys among nodes for
such type of networks that is called ’hybrid cryptosystem’.
Hybrid cryptosystem utilizes combination of public and private
key cryptography, where the exchange of an encrypted session
key is completed using public key cryptography. The following
encrypted session is then pursued with private key cryptogra-
phy. We have used this technique to make our algorithm more
secure and robust since security of asymmetric key encryption
is considered higher.

II. RELATED WORK

Several protocols for encryption and authentication have
been proposed by researchers in the past decade for secure
dissemination of information on wireless sensor networks.
One of the earliest and special methods for exchanging keys
was Diffie-Hellman key exchange. This method enables two
different users who do not know each other to establish a
shared secret in between them over an insecure communication

31ISBN: 978-1-4799-5754-5/14/$26.00 ©2014 IEEE

channel. This protocol provides the basis for a variety of
authenticated protocol and is used for perfect secrecy. For
exchanging keys, another cryptosystem is RSA (Rivest Shamir
Adleman) in which the encryption key is public and differs
from the decryption key which is kept secret. In this particular
algorithm asymmetry is based in the factoring the product of
two large prime numbers along with the auxiliary value, as
their public key. But due to the limitations of the wireless
sensor nodes described in the previous chapters, we cannot
manage to use them for key exchange [4]. Using a fast
multiplication algorithm, Qing [5] presented an authentication
scheme that can be employed in WSNs based on ECC (Elliptic
Curve Cryptography). This resulted in reduction of compu-
tational cost. Another similar experiment was performed by
Arazi in [6], [7] where a group key generation technique based
on the ECC for the clustered based wireless sensor networks
is proposed. They distributed the computational load of key
generation process among neighboring nodes to decrease the
execution time and balancing the power consumption [8]. After
reviewing the experiments and results of several researchers,
we reached a conclusion that ECC supports a higher level of
security than the standard encryption techniques for instance
RSA, AES etc., while using shorter key length and introducing
less computational overhead.

III. PROPOSED ALGORITHM

While cryptographic mechanisms are optimized to suit the
resource constrained sensor and actuator networks, where the
networks are integrated into the internet, such cryptographic
mechanisms can still experience poor performance due to the
size of the packets exchanged and the length of the keys.
Furthermore, it is difficult to distribute the security keys
in the federated combination of networks [9]. Thus these
mechanisms need certain assumptions while designing our
algorithm:
• Static Network: Our network is static that means the

nodes are not mobile.
• Everlasting Battery: Power supplied to the nodes is sup-

plied by long lasting batteries.
• Computational and communication capabilities of all

nodes are equal.
• Few nodes are assumed to be strong nodes, helping in

doing handshaking between the weak nodes.
• Nodes will establish a symmetric key among themselves

at time of network deployment
• Memory: Nodes have enough space to store hundreds of

bytes of keying material.
• Attacker will know information of a node, if the node is

being compromised.

A. Cryptographic Mechanism

Elliptic curved based algorithms use significantly smaller
key sizes than their non elliptic curve equivalents. The ap-
proximate equivalency in the security strength for symmetric
algorithms compared to the standard asymmetric algorithms
and ECC algorithms are mentioned below in the table I.

TABLE I
NIST RECOMMENDED KEY SIZES

AES key length(bits) RSA key length(bits) ECC key length(bits)
Symmetric Asymmetric Asymmetric

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

Its obvious from above comparison that to in order to take
strength of 80 bits symmetric key, a standard asymmetric
algorithm should have an enormous key of 1024 bits. Such
huge number of bits are not practical for wireless sensor
networks due to the amount of processing that would be
required, and hence the speed of the operation. For the same
operation 160bits of Elliptic Curve Cryptography key would
have been required.

B. Overview of Proposed Algorithm

In the proposed algorithm, different pair wise keys are com-
puted for each pair of nodes. Each pair wise key is generated
randomly by one node of the pair which provides it to the
other node through a cryptography algorithm. Asymmetric key
is distributed in this way:
• Every node will have a pair of private and public key

stored in it together with the Node ID.
• Each node stores an authentication table, which is com-

posed of Node ID, Bit Mask and the precomputed Hash
on the authentic public keys.

C. Authentication table

To make this algorithm memory conservative, strategy cho-
sen is to divide the network in two parts on the basis of amount
of data stored in their authentication table.
• A type nodes(Weak nodes)
• B type nodes(Strong nodes)

Weak nodes are large in number; however the strong nodes
are few in number. Each node in its memory, stores an
authentication table which is composed of Node ID, Bit Mask
and the precomputed Hash on the authentic public keys.
A Type nodes will store this data for only B Type of nodes.
However B Type nodes, being stronger will save data for
A type of nodes and also B type of nodes. And each strong
node will help many weak nodes to communicate with each
other by helping them in a handshake.

D. Test Case Example

To illustrate the proper working of our proposed algorithm,
we consider a test case scenario that assumes a wireless sensor
network comprising of six (6) nodes. We take five weak
nodes, such as (A1, A2, A3, A4 and A5) and one strong
node (B type) for helping A type nodes for communication
as explained before. The authentication table of node A1 will
store all available information including the Node ID, M bits
and the Hash of B type of node. But for all other A type of

32

nodes it will just store Node ID, hence saving the memory
as shown in the table II. However, the strong node (B type)

TABLE II
AUTHENTICATION TABLE FOR A TYPE NODE (A1)

Node ID M bits Hash
B 0110 ********
A2 N/A N/A
A3 N/A N/A
A4 N/A N/A
A5 N/A N/A

will store complete information about all the neighboring
nodes as shown in the following table. This data stored in the

TABLE III
AUTHENTICATION TABLE FOR B TYPE NODE

Node ID M bits Hash
A1 1110 ********
A2 0011 ********
A3 1100 ********
A4 1010 ********
A5 0110 ********

authentication table is used to authenticate each other before
starting proper communication.

E. Communication between weak and strong nodes

Our proposed algorithm divides the WSN nodes in two
types. If A type node wants to communicate with B type node
then to start this communication they need to authenticate each
other using their stored information. If A1 need to authenticate
B, then A1 have the M Bits and Hash of B in its authentication
table as shown in table 2. Similarly B has M Bits and Hash
of A1 in its authentication table. In order to authenticate each
other, they will share their public key with each other. When
B will send its public key to A1, A1 will remove M bits from
its public key according to bit masking, and will calculate its
hash value. Then it will compare the computed hash value
with the hash value stored in its authentication table for B. If
both values match then B will be authenticated. Similarly B
will authenticate A1. This working can be graphically shown
as follows:

F. Communication between weak nodes

Now if A1 needs to communicate with same type of Node,
lets suppose with A2, then A1 does not have M Bits and Hash
for A2 in its authentication table. Now in order to communi-
cate, A1 will send hello message to A2. After receiving hello
message, A2 will broadcast handshake request (A2− > A1) to
B Type node asking for symmetric key. B type node already
have pair wise keys for A1 and A2, as it already authenticated
them, and it stores data(M Bits and Hash) for them in its
authentication table. B type node will respond back to A2.
A2 will send ACK back to B node ensuring the start of
handshaking. Now B generates a random number R, and sends
it to both the nodes, encrypting the message with the respective
pair wise key. Hence A1 will be able to communicate with A2,

Fig. 1. Communication between weak and strong node

keeping the algorithm more secure and memory efficient than
before. Graphical representation for communication and key
exchange between two same kinds of nodes is given below:

Fig. 2. Communication between two weak nodes

G. Experimental environment

In this section we describe tools that have been used in
performing the experimental work. Working environment used
for publishing results for this paper is:
• Ubuntu 12.04
• Tiny OS
• Eclipse (with YETI plugin)
• Tiny ECC library

33

IV. ANALYSIS OF ALGORITHM

As discussed earlier that main purpose for designing this
protocol was to reduce the memory requirements of majority
of the nodes. Memory storage for A type of nodes, which are
large in number, is reduced significantly. As A type of nodes
will not store data (M Bits and Hash) for other Anodes as
B type nodes will help them in doing the handshaking and
furthermore in their communication followed by authentica-
tion. The table below shows that the A Type of nodes will

TABLE IV
MEMORY ANALYSIS OF THE NODES

Memory Pre Storage for
A type Nodes

(Pri Key+Pub Key)+ y(i+ j+
m)

Memory Pre Storage for
B type Nodes

(Pri Key+Pub Key) + (x ∗ (y−
1))(i+ j +m)

Memory working storage
for A type Nodes

(Pri Key + Pub Key) +
y(SymKey) + x(SymKey)

Memory working storage
for B type Nodes

(Pri Key+Pub Key) + (x ∗ (y−
1))(i+ j +m)

store data (M Bits and Hash) for just B type of nodes, hence
our protocol saves the memory for A type of nodes.

V. RESULTS AND DISCUSSIONS

In our test case implementation, we observed that A type
of node will store 1298 bytes in RAM. For making pair wise
key with 4 more A Type of nodes, 64 more bytes will be
required so in total 1362 bytes in RAM will be consumed.
Because at the end of the handshake A type node will have
symmetric key established with 4 more A type nodes. B Type
of node will store 1736 bytes in RAM. These nodes have
to store much more keys then A Type of nodes. During its
establishment of keys with A Type of nodes, there is no
special memory requirement. These nodes only save the keys
that are established asymmetrically.

A. Results for Key Generation time

In order to evaluate our algorithms working, first we looked
at the results in terms of key generation time. Several readings
were taken in order to analyze when two same type, say
A Type of nodes communicate with each other by the help
of B Type node. As its shown in graphical representation Fig
2, that there will be some extra exchange of message which
will help both A Type of nodes to communicate with each
other, so time to generate pair wise keys between them will
be slightly more than the communication between different
types of nodes.

B. Results for total number of packets exchanged

After obtaining results for time consumed in key generation
process, we then focused our attention to observe the total
number of packets that were exchanged between the nodes.
The topology and working environment remained the same
during this experiment like before. These results are regarding
the total number of packets sent, when same type of nodes
(say A Type) took help from B type node in communication.
It is observed that a linear increase in total number of packets

Fig. 3. Pair wise key generation time of the nodes

exchanged with the addition of more weak nodes trying to
communicate via strong node (B type).

Fig. 4. Total packets exchanged for communication

VI. CONCLUSION

From the results of implemented algorithm, it can be
seen that memory required to establish pairwise keys has
been saved for weak nodes, which are higher in number.
Moreover, it is also observed that this algorithm also ensures
authentication, confidentiality and nonrepudiation at the same
time. Time taken to establish the key is almost same as
other key management techniques using asymmetric technique
(for communication between different types of nodes) and
symmetric technique (for communication between same types
of weak nodes). In order to conserve memory, computation
and communication metrics are affected but by a very small
margin. We believe that this algorithm can be adopted for such
real networks where most of the WSN nodes have memory
constraints yet secure communication between the nodes is of
paramount importance.

VII. ACKNOWLEDGMENT

We acknowledge the help taken from Prof. Maurizio Re-
baudengo who works in DAUIN, Politecnico di Torino, Italy.

34

REFERENCES

[1] Vladimir Cervenka, Dan Komosny, ”Energy efficient public key cryptog-
raphy in wireless sensor networks”, published in book titled ”Innovations
and advances in computers, information, system sciences & engineering”,
Volume 152, 2013, pp497-509.

[2] Lingling Si, Zhigang Ji, Zhihui Wang, ”The application of symmetric key
cryptographic algorithms in wireless sensor networks”, Physics Procedia
2012, pp552-559.

[3] Al-Sakib Khan, Hyung-Woo Lee, Choong Seon Hong, ”Security in
wireless sensor networks: Issues and challenges”, Feb 2006 ICACT2006,
ISBN 89-5519-129-4.

[4] Sarmad Ullah Khan, ”Key Management in Wireless Sensor Networks,
IP-Based Sensor Networks”, Content Centric Networks in Politecnico di
Torino, March 2013. [Online available: http://porto.polito.it/2506342/]

[5] Qing Chang, Yong-ping Zhang, Lin-lin Qin , ”A node authentication
protocol based on ECC in WSN”, Computer Design and Applications
(ICCDA), 2010

[6] Arazi, O., Qi, H., ”Self-certified group key generation for ad hoc clusters
in wireless sensor networks”, Computer Communications and Networks,
2005. ICCCN 2005. Proceedings. 14th International Conference on , vol.,
no., pp359-364, 17-19 Oct 2005.

[7] Arazi, O., Elhanany, I., Rose, D., Qi, H., Arazi, B., ”Self-certified public
key generation on the Intel mote 2 sensor network platform”, Wireless
Mesh Networks, 2006. 2nd IEEE Workshop on, vol. no., pp118-120, 25-
28 Sept 2006

[8] Khan Sarmad Ullah, Lavagno L. Pastrone C., Spirito M.A., ”An energy
and memory efficient key management scheme for mobile heterogeneous
sensor networks”, Risk and security of Internet and systems (CRiSIS),
6th International conference. pp1-8. Sept 2011

[9] Moshaddique Ameen, Jingwei Liu and Kyungsup Kwak, ”Security and
Privacy Issues in Wireless Sensor Networks for Healthcare Applications”,
Journal of Medical Systems, 2012, Volume 36, Issue 1, pg93-101.

[10] Elaine Barker and Allen Roginsky, ”Transitions: Recommendation for
Transitioning the Use of Cryptographic Algorithms and Key Lengths”,
NIST Special Publication, NIST special publication 800-131A.

35

