
Journal of Classification 32:241-267       (2015)
DOI: 10.1007/s00357

TOBAE: A Density-based Agglomerative Clustering Algorithm

Shehzad Khalid

Bahria University, Islamabad, Pakistan

Shahid Razzaq

Bahria University, Islamabad, Pakistan

Abstract: This paper presents a novel density based agglomerative clustering algo-
rithm named TOBAE which is a parameter-less algorithm and automatically filters
noise. It finds the appropriate number of clusters while giving a competitive running
time. TOBAEworks by tracking the cumulative density distribution of the data points
on a grid and only requires the original data set as input. The clustering problem is
solved by automatically finding the optimal density threshold for the clusters. It is ap-
plicable to any N-dimensional data set which makes it highly relevant for real world
scenarios. The algorithm outperforms state of the art clustering algorithms by the ad-
ditional feature of automatic noise filtration around clusters. The concept behind the
algorithm is explained using the analogy of puddles (’tobae’), which the algorithm is
inspired from. This paper provides a detailed algorithm for TOBAE along with the
complexity analysis for both time and space. We show experimental results against
known data sets and show how TOBAE competes with the best algorithms in the field
while providing its own set of advantages.

Keywords: Clustering; Agglomerative; Density distribution; Automatic; Noise re-
moval; Non-parametric; Filtering; Terrain; Water puddles; Density threshold.

1. Introduction

An increasing number of systems are now able to capture and store
large amount of digital data from all walks of life. General purpose tools are
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urgently required for mining useful information out of large datasets. This
has acted as a spur to the development of content-based data management
techniques such as data search and retrieval, discovery of normal patterns,
identification of anomalies, classification and prediction. An automated data
mining and analysis system is critical to extract useful information from
data. Unsupervised learning of patterns is considered to have a pivotal role
in higher level data analysis and understanding. A dataset contains in it-
self different types of semantic patterns each represented by data samples.
Normal patterns are quite common and are represented by many samples.
Clustering determines these intrinsic patterns, based on similarities between
data samples, that are present in datasets by grouping data such that there
is low inter-class similarity and high intra-class similarity. The application
of clustering includes document clustering (Boley, Gini et al. 1999; Zhao,
Karypis, and Fayyad 2005; Tagarelli and Karypis 2013), unsupervised im-
age categorization (Dueck and Frey 2007), grouping and analyzing genes
and exons (Frey et al. 2005), constructing treatment portfolios (Dueck, Frey
et al. 2008), facility location (Lazic, Frey, and Aarabi 2010; Lazic, Givoni,
Frey, and Aarabi 2009) and so on. There exists a variety of techniques that
has been used for clustering of data.

1. Hierarchical Clustering: Hierarchical techniques combine or divide
existing groups according to some similarity measure and maintain
a hierarchical structure of the order in which the groups are merged
or divided. Agglomerative clustering (Buzan, Sclaroff, and Kollios
2004; Vlachos, Kollios, and Gunopulos 2002; Jain and Dubes 1988,
Yager 2000; Everitt, Landau, and Leese 2001) is well known appli-
cation of hierarchical technique. However, hierarchical approaches
are computationally expensive and are not scalable to large datasets.
They are also not robust to noise and outliers. Extensions of hier-
archical clustering approaches such as BIRCH (Zhang, Ramakrish-
nan, and Livny 1996), CURE (Guha, Rastogi, and Shim 2001) and
ROCK (Guha, Rastogi, and Shim 1999) have been proposed to cater
for the drawbacks of hierarchical clustering. BIRCH tackles the prob-
lem of scalability and robustness by generating a clustering feature
tree storing the summaries of original data. However, BIRCH is only
applicable in identification of elliptical clusters with Gaussian densi-
ties. Guha et al. proposed CURE and ROCK to cater for the presence
of complex shape clusters in the datasets. Both ROCK and CURE
employ random sampling to ensure scalability to large datasets. How-
ever, ROCK and CURE can not cater for the presence of heterogenous
clusters in the datasets. This limitation is handled in CHAMELEON
(Karypis, Han, and Kumar 1999). It is an agglomerative clustering
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algorithm that operates on K-nearest neighbor graph where the nodes
are the data samples and edges are the similarity between data sam-
ples. CHAMELEON uses a minimum edge cut to divide the connec-
tivity graph into a large number of relatively small sub-clusters. It then
applies agglomerative clustering, based on both relative interconnec-
tivity and relative closeness, to find the genuine clusters by repeatedly
combining together these sub-clusters. However, CHAMELEON can
not cater for the presence of outliers in training data.

2. Spectral Clustering: In recent years, spectral clustering has become
one of the popular clustering algorithms having its roots in graph the-
ory. It employs eigenspace decomposition of the symmetric similar-
ity matrix between sample training data. Traditional clustering tech-
niques, such as K-means, are then applied to a subspace of the eigen-
vectors. Spectral clustering can also identify non-convex clusters such
as intertwined spiral. Recently, a number of techniques have been pro-
posed that employ spectral clustering for learning patterns from un-
classified data (Ng, Jordan, Weiss et al. 2002; Porikli and Haga 2004;
Zelnik-Manor and Perona 2004). Ng et al. (2002) analyze the spec-
tral clustering algorithm using matrix perturbation theory and perform
clustering using spectral analysis of affinity matrix computed using
samples from a given dataset. However, the proposed algorithm can
not automatically identify the number of clusters if such information
is not available beforehand. Porilki and Haga (2004) employ spec-
tral clustering for event analysis and can automatically decide on the
optimal number of clusters. The proposed algorithm, however, can
not deal with clustering data that is distributed according to different
scales. Zelnik-Manor and Perona (2004) propose a solution to this
problem by calculating a local scaling parameter for each instance in-
stead of having a single scaling parameter for the whole dataset. The
scaling parameter is calculated automatically by calculating the dis-
tance of the training sample from its 7-NN instance.

3. Neural Networks: Neural Networks have been used extensively for
clustering (Johnson and Hogg 1996; Owens and Hunter 2000; Stauf-
fer and Grimson 2000; Sumpter and Bulpitt 2000). They have the
advantage that a very small number of parameters needs to be op-
timized for training a network and no a-priori assumptions on the
property of data are made. A number of different neural network
architectures and methods have been used for unsupervised learn-
ing. These include multi-layer perceptrons (Conan-Guez and Rossi
2002), self-organizing maps (SOM) (Owens and Hunter 2000; Khalid
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2010b), learning vector quantization (Johnson and Hogg 1996; Stauf-
fer and Grimson 2000; Khalid 2010b; Khalid 2010a; Khalid and Raz-
zaq 2012) etc. Typical neural network based learning algorithms (John-
son and Hogg 1996; Owens and Hunter 2000; Stauffer and Grimson
2000; Kohonen 1997) have a tendency to stuck in the problem of local
minima. Khalid (2010b) presented a solution to this problem by ini-
tializing the neural network with higher number of output neurons as
compared to the desirable number of groupings. Neural network com-
ponent is then responsible for extracting fine groupings in trajectory
data set only once. Hierarchical component uses these fine clusters
to generate coarse clusters and, in the process, discovering the actual
number of groupings in the trajectory data set.

4. Partitional Clustering (Square Error based): In contrast to hierarchi-
cal clustering, partitional clustering assigns data samples to K non-
hierarchical partitions. K-means (Abraham, Cornillon, Matzner-Løber,
and Molinari 2003; Alon, Sclaroff, Kollios, and Pavlovic 2003; Bag-
nall, Janacek, and Zhang 2003) is a well-known data partitioning
method. It is an appropriate technique for learning patterns under the
assumption that the clusters are hyperspheroidal. An extension of K-
means, referred to as K-Mediods, selects one of the actual data points
as a cluster center. Affinity propagation-based approaches have also
been proposed recently (Frey and Dueck 2007). Affinity propagation
(AP) uses message passing mechanism between training data points
to solve the K-Mediod problem by finding representative exemplars
within data set with a similarity structure. However, AP requires the
specification of two important parameters: preference parameter and
the damping factor which is hard to determine. The solution to this
problem is provided by Wang, Zhang, Li, Zhang, and Guo (2008).
They proposed an adaptive affinity propagation method for clustering
to automatically select the preference parameter to identify the correct
number of clusters and finding the optimal clustering solution. How-
ever, these approaches cannot cater for the presence of anomalies in
training data.

5. Density-based Clustering: Density-based clustering approaches
(Ankerst, Breunig, Kriegel, and Sander 1999; Sander, Ester, Kriegel,
and Xu 1998; Hinneburg and Keim 1998; Hinneburg and Gabriel
2007) computes density of samples and uses kernel density estimates
to identify dense regions as clusters. DBSCAN (Sander et al. 1998)
is the first density based clustering approach that performs density
based spatial clustering in input space in the presence of noise. DEN-
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CLUE (Hinneburg and Keim 1998; Hinneburg and Gabriel 2007) is a
clustering method based on a set of density functions. They use lo-
cal maximum of Gaussian kernel density function to identify different
clusters. A hill climbing approach is used to assign points to different
clusters. Although DBSCAN and DENCLUE are efficient cluster-
ing approaches with lower computational complexities, they require
manual specification of input parameters of cluster radius and density
threshold which have significant impact on clustering quality.

From the above discussion, it follows that most of these algorithms break
down when the training dataset contains anomalous samples. A major sub-
set of approaches can only learn patterns with elliptical distribution of sam-
ples and can not handle complex shape clusters. Most of the approaches
require manual specification of parameters such as number of clusters, clus-
ter density threshold etc. that have a significant impact on clustering quality
(Karypis, Han, and Kumar 1999; Sander et al. 1998; Hinneburg and Keim
1998; Hinneburg and Gabriel 2007; Abraham et al. 2003; Jain and Dubes
1988; Owens and Hunter 2000). Many unsupervised learning approaches
cluster training data by defining the pairwise similarities between training
samples (Davies and Bouldin 1979; Ng et al. 2002; Porikli and Haga 2004;
Bashir, Khokhar, and Schonfeld 2007a; Bashir, Khokhar, and Schonfeld
2007b; Frey and Dueck 2007; Wang et al. 2008) which is extremely in-
efficient. The main problem with existing clustering algorithms is that they
do not concurrently address all the requirements of clustering such as scal-
ability, handling outliers, learning complex shape clusters, insensitivity to
order of input training samples and so on.

Some approaches for clustering in the presence of anomalies have
also been presented (Khalid 2010b; Khalid and Naftel 2010; Fraley and
Raftery 2002). Khalid and coworkers (Kahalid 2010b; Khalid and Naftel
2010) offer an iterative approach for anomaly detection by clustering the
data and iteratively removing clusters affecting cluster quality whilst auto-
matically detecting the number of clusters. However, the proposed approach
in Khalid et al. (Khalid 2010b; Khalid and Naftel 2010; Naftel and Khalid
2006) works in the presence of elliptical distribution of clusters. Clustering
approach (Stuetzle 2003; Stuetzle and Nugent 2010) based on generalized
single-linkage method for hierarchical clustering of data has also been pre-
sented. It performs better than other clustering techniques like single-link,
average-link, complete link, Wards method and model based clustering -
particularly in its ability to handle non-convex clusters. It proposes graph
tree pruning over dendrogram cutting, for revealing the final clusters in data.
However the choice of the runt excess mass threshold is subjective and a
mathematical means of determining it is not given.
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In this paper, we present a novel algorithm for learning patterns in
the presence of anomalies in training data. The motivations of the proposed
learning algorithms are to:

• Develop an unsupervised learning algorithm that efficiently learns the
pattern with the space and time complexity much less than O(n2)
where n is the number of training samples.

• Automatically identify the right number of patterns instead of requir-
ing manual information regarding the number and types of groupings
hidden in data set.

• Learning in the presence of complex shape distributions of normal
patterns

• Minimizing the adverse effects caused by the presence of anomalies
in training data, on learning of normal motion patterns.

The remainder of this paper is organized as follows. In Section 2,
a novel clustering algorithm, referred to as TOBAE, will be presented. De-
tailed complexity analysis in spatial and time domain is presented in Section
3. Experiments have been performed to show the effectiveness of proposed
system for clustering of complex shape clusters in the presence of anoma-
lies, as compared to competitors. These experiments are reported in Section
4. The last section summarizes the paper.

2. TOBAE: The Proposed Clustering Algorithm

TOBAE algorithm works by capturing the cumulative density distri-
bution of data points in space. Each m-dimensional data point leaves a
density signature in the spatial domain and the cumulative effect of these
signatures is used in clustering the regions of high density. The algorithm
is inspired from the natural phenomenon of water accumulation in puddles
on the ground. The same concept can be extended to any m-dimensional
scenario. The term ’tobae’ is a Siraiki/Punjabi word, for puddles.

Considering this analogy of puddles, similar to how the ground can be
uneven and have depressions, the distribution of data-points is also subject
to variations of density. The areas of high data-point density correspond to
ground depressions in the puddles analogy, as depicted in Figure 1. Clus-
ters then are simply the regions where puddles of water are formed for a
given water level. Using this mechanism, the problem of clustering data
breaks down to a single task, that of finding the appropriate water level for
the terrain. Different water level scenarios would result in different num-
ber and size of puddles on the ground. For non overlapping and spatially
separate depressions, the change in water level only effects the size of the
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Figure 1. Puddle analogy used to explain data point clustering. Dataset consisting of
complex shapes cannot be solved using mean or centroid based approaches. (left) Data
points are shown here against the original flat terrain. (center) Areas of high data point
density are equivalent to deep depressions in the puddles analogy. (right) The underground
water level results in the creation of water puddles.

Figure 2. A top view of the terrain with the depth of ground water level decreasing from left
to right i.e. going from greater depth to shallow depth. The merging effect of puddles can be
seen from left to right and results in the agglomeration of smaller puddles into bigger ones.

water puddle. But for overlapping depressions, this can result in the merger
or breaking up of existing puddles. This phenomenon is depicted in Figure
2 and accounts for the agglomerative nature of TOBAE.

The depth of terrain in the puddles analogy is equivalent to the density
of data points in the clustering domain. The optimal water level search then
is equivalent to finding the optimal density level in the spatial domain of data
points. The algorithm is divided into two steps. First is the computation of
the cumulative density signatures for the data-points and the second is the
optimal density level search. Once the density signatures of the data points
have been accumulated in the first step, the algorithm becomes agnostic of
individual data-points and all further calculations are based on the density
based terrain.

The two high level steps of the algorithm are divided into smaller
parts and explained in detail in the following section. These include:

• Terrain Setup

m-dimensional grid creation

Spatial indentation computation for data-points
• Optimal density level search
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2.1 m-dimensional Grid Creation

The natural phenomenon of tobae or puddles takes place in a continu-
ous spatial domain of the real world. In order to simulate that in the discrete
domain of digital computers, the spatial domain must be discretized. TO-
BAE logically divides the spatial domain into equally size m-dimensional
hypercubes. The size of these hypercubes is of particular importance to the
algorithm and directly effects how accurately TOBAE can generate clusters.

The following scheme is proposed for determining the size of the hy-
percubes in the TOBAE grid. Let m and n represent feature size and the
number of records/data-points respectively. For a given data set, a histogram
of nearest neighbor distances is generated for the data points. The global
maximum in this nearest neighbor (NN) distance histogram is used as the
size of the grid hypercubes, referred to as μ. For a data set containing n data
points, the nearest neighbor distance NNi (where 1 < i < n) is calculated
for every ith point. A histogram vectorH of length b is created for capturing
the distribution of nearest neighbor distances with H0 and Hb−1 signifying
the lowest and highest bins of nearest neighbor distances. The range RH

represented by each bin (or element) of H is given as:

RH = (NNmax −NNmin)/b, (1)

where b = �3√n�, NNmin and NNmax is the smallest and largest nearest
neighbor distance value amongst all points in the data set. The number of
bins b is kept as a function of the data set size. The size μ of the grid
hypercubes can then be calculated as:

μ = NNmin + (ı+ 1/2) ∗RH , (2)

where ı is the (0 based) index of the global maxima of the histogram and is
computed as ı = argmax0≤i≤b−1Hi.

The density based grid is a logical partitioning of the m-dimensional
space and is aligned with the axis of the m dimensions. Moreover the in-
dexes of the grid constitute of only positive integer values greater than or
equal to 0. The upper bound of the indexes for any dimension is directly
related to the highest value of that dimension across all the data points. The
input dataset can be represented as a n × m dimensional matrix D. Let X
and Y be two vectors of length m elements each, representing the maximum
and minimum values of each dimension across the n records. These can be
written as:

Xj = argmax
i

(Di,j), (3)

Yj = argmin
i
(Di,j), (4)
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where j ranges from 0 tom−1 and i from 0 to n−1. For anm-dimensional
grid G, the number of cells in the jth dimension, represented as ℵj , is given
as:

ℵj = ((Xj − Yj)/μ) + 1, (5)

where j ranges from 0 tom−1. Each cell in the grid is like a bin represented
by a range of values along a given dimension. The grid computation step
is the instance where the nearest neighbor distance measure is used in the
proposed algorithm. The order of complexity, with respect to time, for the
NN calculations is O(n2). However this can be reduced using approaches
such as early abandonment (Keogh, Wei, Xi, Lee, and Vlachos 2006) and
space partitioning trees.

Up to this point, the discussion of the grid has not assumed a par-
ticular type of data structure. Owing to the sparse nature of data sets, and
consequently the sparsity of the density occupied grid cells, we recommend
a hash table based approach which adequately addresses the problem. The
algorithm given in this paper and the complexity analysis are both based on
a hash table based implementation of the grid. This can be replaced with
any other data structure depending on the requirements of time and space.

2.2 Spatial Indentation Computation for Data-points

The previous section sets up a grid for the given dataset. The next
step is to add the density signatures of the individual data points to the grid.
Once this is complete, all subsequent processing can be performed on the
grid and the data points can effectively be discarded.

As can be seen in Figure 1 (center image), each data point leaves a
trace of its density signature on the grid. The combination of all such density
signatures determines the contours of the terrain. The size and shape of these
individual density signatures, or density distribution as it will be called here
onwards, is important. We have used the normal (Gaussian) distribution to
model the shape of the density distribution for the individual data points.
This gives ample weight to nearby cells and lesser weight to ones further
away.

The cell size μ for the grid had been based on the nearest neighbor
distance criterion and hence the size of the density distribution can now be
made as a function of this μ. The size of the Gaussian distribution has a di-
rection correlation with the shape of the cumulative density distribution for
the data set. Figure 3 shows three cases of density distribution size for the
concentric circles data set. If a very small size is selected, the cumulative
density distribution shows disconnected density signatures. A very large size
of the density distribution results in the merger of density distribution from
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Figure 3. The effects of different sizes of the per-point density signature, on the cumulative
density distribution for the data set. (left) Small signature size (center) Correct signature size
(right) Large signature size.

across different clusters. The correct size results in the creation of the cu-
mulative density signature that is a good representation of the distribution of
data points in space. The standard deviation for the Gaussian density signa-
ture is given as σ = Cμ. The value of constant C is determined empirically
and give optimum results with value C = 3.5 for all cases.

Using the above mentioned size and shape, the density signature of
the n data points of data setD is added to the grid. The general formula for
the Gaussian distribution is:

f(x) = (1/σ
√
2π))e(−(x−y)2/2σ2), (6)

where y is the mean and x is the variable entity. For the grid, the distance
(x− y) is equal to the distance between the cell corresponding to the given
data point and the cell for which the density effect is being calculated. If this
distance is denoted by d, then the final value of density effect is given as:

̂f(d) =
e(−d2/2σ2)

σ
√
2πM

, (7)

where M is the normalization factor equal to the maximum value of the
Gaussian density distribution for the chosen value of σ. The normalized
density distribution as a function of μ is shown in Table 1. Around 99% of
the density signature is limited within a radius of 3σ or approximately 10μ.

Here is the procedure for computing the cumulative density signature
for the data set. Initialize density values of all cells to 0. For each data point
in D, do the following:

1. Identify cell I for the data point for which it falls within the cell’s
corresponding bounding box.

2. For every neighbor cell J within a radius of 10μ from I , calculate
Euclidean distance d between centroid of cells J and I .

3. Calculate the density value t for J using this distance d in eq. (7).
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Table 1. Normalized density distribution as a function of μ. The density signature for the
data points exhibit a Gaussian (normal) distribution.

Distance from
density center

0 μ 2μ 3μ 4μ 5μ 6μ 7μ 8μ 9μ 10μ

Density value 1.00 0.96 0.85 0.69 0.52 0.36 0.23 0.14 0.07 0.04 0.02

4. Increment the density value at J by t.
5. Repeat sets 1-4 for all data points.

For anm-dimensional data set, the Gaussian density signature is also
m-dimensional and the same eq. (7) is used to calculate the density values
for the neighboring cells, using them-dimensional Euclidean distance d be-
tween the cells. The abovementioned steps are repeated for every data point,
the result of which is a modified grid which captures the density distribution
for all the data points. Using this procedure, the resultant cumulative density
distribution for the two-dimensional concentric circles dataset can be seen in
Figure 3 (center image). Notice the variations in depth for the depressions
throughout the grid, which reasonably capture the density of the original
data points. With the density grid populated, the next step is to search for
the optimal density level.

2.3 Optimal Density Level Search

Selection of density level is critical in identifying the correct num-
ber of clusters. Before the optimal density level search can be explained,
it would be useful to draw its parallel in the puddles analogy. Here we in-
troduce the concept of ’ground water level’. The indentations in the grid
are analogous to depressions on the ground and are subject to underground
water table level. Therefore for a given water level, puddles are formed in re-
gions with depth greater than or equal to the water level, whereas shallower
regions do not show any puddles and remain dry. In the puddles analogy,
the puddles formed for the optimal ’water level’ are the clusters whereas the
rest of the depressions are ignored.

Consider the case where the initial water level is equal to the deepest
depression in the terrain. In this case only the deepest point(s) in the terrain
will form one or more puddles. As the water level is made shallower, the
area occupied by the water puddles also increases as seen in Figure 2. At
certain values of depths, two or more puddles can merge if the water depth
becomes equal to the shallowest point between the two puddles. There are
two cases where this puddles merging can happen:

1. Intra-cluster puddle merging: This is the merging of lower density re-
gions of a cluster with those of higher density inside the same cluster.
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Figure 4. Plots of depth (x-axis) and puddle count (y-axis) for different data sets using σ =
2.5μ. For variety of data sets, the same behavior can be observed, i.e. two distinct peaks in
the plot with a local minimum in between which represent the optimal water level.

2. Inter-cluster puddle merging: This is the merging of a cluster’s puddle
with either a neighboring cluster or with puddles corresponding to
noise.

Type 1 is desired for clustering whereas type 2 is not. The problem
therefore breaks down to that of finding the shallowest water level which
would give type 1 puddle merging, without encountering type 2 merging.

Figure 4 shows plot of puddle count vs. water depth for terrain gen-
erated for five different data sets. The behavior shown in the plot forms the
basis of the optimal density level search. It shows two distinct phenomena.
As the water level depth is decreased from the maximum depth value (from
right to left inside the plots), there is a sprouting of puddles across the grid,
seen as a hike in the puddle count. At some depth the puddle count reaches
a local maximum, after which there is a agglomeration or merging stage
where the global puddle count decrease due to the type 1 intra-cluster merg-
ing of puddles. As the water depth approaches 1, which is the maximum
density value in the individual density signature, there is sharp hike in the
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Figure 5. TOBAE algorithm using concentric circles data set. (left) Visualization of the 2D
data points. (center) Puddle view for TOBAE for depth similar to the one visualized in Fig.
2 center image. Each color represents a different puddle id. (right) Final puddle view for
the data set. Optimal density level is found using the minima in between the two maximas
(corresponding to plots of Fig. 4) and noise has been automatically filtered out.

plot. This second hike is attributed to the noise in the data set. Noisy data
points are in general spatially distinct and therefore the maximum value of
their depth in the terrain is 1 (equal to the maximum value of the normalized
density signature). When the water level becomes equal to 1, the depres-
sions corresponding to noise form puddles and result in the puddle count
hike. A good candidate for the optimal water depth is one corresponding
to the local minimum of puddle count, after the type 1 agglomeration of
puddles has occurred. This corresponds to the minimum between the two
maxima identified above. This water level will produce very few puddles,
thus allowing the constituent parts of individual clusters to merge together,
while still avoiding shallower depths where noise is found.

Considering the above mentioned analogy and applying it to the den-
sity domain, the density puddles would correspond to connected collections
of cells which have density value greater than or equal to the current (global)
density level. As density puddles merge with the decrease in this density
level, distinct density puddles need to be merged to form bigger puddles.
The TOBAE algorithm, as presented later, tracks the individual density pud-
dles using puddle identifiers (pid). Every new density puddle is assigned a
new pid. When two or more puddles merge, the result is the discarding of
all pids except one, which the new bigger puddle retains. These puddle ids
are visually represented as different colors in Figure 5. The puddle analogy
is extendable to higher dimensions. Figure 6 shows such a puddle view for
a 3-dimensional torus dataset.

The TOBAE algorithm for complex shape clustering, in the presence
of anomalies, is presented in Tables 2-6. The algorithm populates the density
grid and then finds the optimal density level for the density terrain. Figure 5
shows the visualization of the puddles when running TOBAE.
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Figure 6. Puddle analogy extended to 3D data sets. (left) Visualization of the 3D data set
of two tori with an inter planer angle of 90 degrees. Tori data points have been generated
randomly and density of points is not constant along the tori ring. (center) Grid view of all
non-zero density cells with brown cells representing region beyond the puddles and the other
colors representing puddles. (right) Visualizing of only the puddle cells.

TOBAE uses non contiguous (sparse) grid cells interlinked through
two separate data structures. The first is the hash table h for tracking the
collection of non-empty cells in the grid g and the second is an array of
linked lists a which split the grid cells into buckets of different puddle ids.
It is important to note that both the h and a maintain references to the same
grid cells i.e. duplicate cells are not created for the data structures. This
hybrid data structure is used for efficient space utilization and is discussed
in more detail in Section 3.

The clustering of data points is deferred to the clustering of their con-
tainer grid cells. Initially all grid cells have the default PuddleID of 0. Dur-
ing the course of the algorithm, valid PuddleIDs of 1 and larger can be as-
signed. As discussed in the previous section, the optimal density level for
the grid is found by searching for the minimum puddle count in between the
two maximum values. The puddles created at this density level are said to
be the clusters for the given data set. Instead of providing the function for
finding the minima, we have represented it by the procedure called Find-
MinimaBetweenTwoMaximas() in the algorithm. Figure 5 (right image) is
the puddle view for the concentric circles dataset, found using this optimal
density search technique. Notice that the noise in the data set has been au-
tomatically filtered.

FindOptimalDensity() is the entry procedure which calculates and
tracks the puddle count at different density levels. Puddle count at any time
is given by the PuddleIDsUsed variable. The procedure iterates between the
density level of maximum density (for the particular terrain) and 1.0 and
stores the puddle count after processing of every cell. The density level
for this puddle count minimum is the optimal density level and the puddles
found at this density level represent the final clusters for TOBAE.
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Table 2. Algorithm for entry level procedure in TOBAE

Algorithm FindOptimalDensity(p)
Input: A set of data points p
1. Grid g
2. Hashtable h
3. ArrayOfLinkedLists a
4. Initialize( p, g, h )
5. PopulateDensityGrid( g, p, h )
6. LinkandSortRelevantGridCells( h, a )
7. for count ← 1 to a[0].length
8. r ← a[0].RemoveHead()
9. ClassifyCell( h, a, r )
10. plot[count].PuddleCount ← PuddleIDsUsed
11. plot[count].Density ← r.density
12. minPuddlesDensity ← plot.F indMinimaBetweenTwoMaximas()
13. returnminPuddlesDensity

Table 3. An algorithm for setting up the data structures

Algorithm Initialize(p, g, h)
Input: A set of data points p
Input: A grid g
Input: A hashtable h
1. HashTableSize ← number of data points in p
2. h.SetSize(HashTableSize)
3. g.GridGridParameters(p)
4. PuddleIDsUsed ← 0
5. CurrentPuddleID ← 1

Table 4. Algorithm to generate the cumulative density signature of the terrain.

Algorithm PopulateDensityGrid(g, p, h)
Input: A grid g
Input: A set of data points p
Input: A hashtable h
1. for each data point dp in p
2. c ← PointCoordToGridCell(g, dp)
3. for each neighbor cell nc of c within r cell radius dist ← CellDistance(nc, c)
4. val ← dist ∗GaussianDistributionV alueAtDistance(dist)
5. if h.ContainsCell(nc) = false
6. then n.density ← val
7. n.PuddleID ← 0
8. h.add(nc)
9. else nc.density ← nc.density + val
10. h.update(nc)
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Table 5. Algorithm for filtering grid cells and sorting the remaining in descending order w.r.t.
density.

Algorithm LinkandSortRelevantGridCells(h, a)
Input: A hashtable h
Input: An Array Of Linked Lists a
1. for each cell c in h
2. if c.val <= 1.0
3. then h.remove(c)
4. else a[0].add(c)

Table 6. Algorithm for classifying incoming cell to its corresponding puddle.

Algorithm ClassifyCell(h, a, r)
Input: A hashtable h
Input: An Array Of Linked Lists a
Input: A cell r
1. List s
2. for each neighbor nc of r present in h
3. if s.ContainsPuddleID(nc.PuddleID) == false
4. then s.add(nc.PuddleID)
5. if s.length == 0
6. then r.PuddleID ← CurrentPuddleID
7. a[CurrentPuddleID].add(r)
8. CurrentPuddleID ← CurrentPuddleID+ 1
9. PuddleIDsUsed ← PuddleIDsUsed+ 1
10. else MergePuddleID ← s.RemoveMin()
11. r.PuddleID ← MergePuddleID
12. a[MergePuddleID].add(r)
13. while s.empty() == false
14. do puddleToMerge ← s.RemoveOne()
15. while a[puddleToMerge].isempty() == false
16. do t = a[puddleToMerge].RemoveOne()
17. t.PuddleID ← MergePuddleID
18. a[MergePuddleID].add(t)
19. PuddleIDsUsed := PuddleIDsUsed− 1

The ClassifyCell() procedure takes the most dense grid cell which
has yet to be assigned a PuddleID and adds it to a puddle. Repeating the
process for all cells (in descending density, as shown by the procedure call
SortLinkedListDescendingByDensity) results in the testing of puddle count
at different depths. The final grouping of the individual data points into
clusters can thus be achieved by looking at the PuddleID corresponding to
their container grid cells at the optimal density level.

In certain cases, adding a new cell to a puddle results in contact be-
tween two distinct neighboring puddles (puddles with different PuddleIDs).
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This result is the puddle agglomeration caused by the raising of density level.
The adjacency criterion for identifying neighbours to merge cells is based on
4-connectivity due to its linear nature.

3. Performance Analysis

Complexity analysis of TOBAE needs to be performed for both time
and space. Worst case and average case complexity is analyzed below for
both space and time. The input data set contains n data points of m di-
mensions each. Each data point creates an n dimensional Gaussian density
distribution on the grid. The range of this density distribution covers all cells
within the distance r from the given cell. The upper limit on the number of
cells that are processed for inclusion in this distance r is (2r + 1)m.

3.1 Time Complexity

The time complexity of TOBAE depends on the time taken to setup
the grid and the time taken for processing individual cells for optimal water
level search. The setup of grid cells includes two different steps. First is the
creation of cells that fall in the range of the density distribution of individual
data points and their inclusion in the hash table. Second is the linking of
all the cells in the hash table followed by their depth based sorting. Time
complexity for the first step in setup is given as:

Average case : O(n), (8)

Worst case : O(n2). (9)

The time complexity for the second part of setup stage includes linking of
the cells in the hash table as well as their sorting. The one time linking of
the cells is of order O(n) whereas the subsequent sorting can be performed
by any O(n log n) sorting algorithm. Time complexity of this step is given
as:

Average and worst case : O(n+ n log n) => O(n log n). (10)

Overall time complexity of setup stage:

Average case : O(n) +O(n log n) => O(n log n), (11)

Worst case : O(n2) +O(n log n) => O(n2). (12)

The optimal density level search includes processing each cell in the list one
by one and assigning it to a PuddleID bucket. The average and worst case
time complexity for the optimal level search is

Average and worst case : O(n). (13)
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(a) (b)
Figure 7. Running time of TOBAE (a) with NN calculation (b) without NN calculations.

Total time complexity of TOBAE, by combining (11), (12) and (13) is:

Average case : O(n+ n log n) +O(n) => O(n log n), (14)

Worst case : O(n2) +O(n) => O(n2). (15)

Figure 7(a) and Figure 7(b) show the running time of TOBAE against
a variable number of data points. Figure 7(a) shows the total running time
of TOBAE and therefore factors in the NN-distance calculations. The time
complexity falls in between O(n log n) and O(n2) for both array and hash
table based TOBAE implementations.

Removing the NN-distance calculations from the running time gives a
curve that falls closer to O(n log n), as seen in Figure 7(b). It is interesting
to note that the running time of the array based implementation falls below
O(n). This shows that as the number of points is increased in the data set,
greater percentage of points falls in previously occupied cells, and therefore
does not add a proportional increase in the running time.

3.2 Space Complexity

The space complexity of TOBAE depends primarily on the number
of cells used for tracking the density distribution. As the grid can contain a
high percentage of unused cells, a hash table based spare grid cell tracking
is preferred. Therefore the overall complexity of the TOBAE includes all
the used grid cells as well as the memory used for tracking the sparse cells
i.e. the hash table memory. Furthermore, array for tracking linked cells is
also used for maintaining the PuddleID buckets.

The following terms are used to denote the data structures used by
TOBAE:

• g = grid
• h = hash table, contains all occupied cells in g
• a = array of linked lists
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DS1 DS2 DS3
Figure 8. Unlabeled training data from DS1-DS3 datasets used in our experiments

Space complexity is therefore given as:

O(g + h+ a). (16)

The grid g is only used to store the properties of the grid and therefore
its space is a function of the number of dimensionsm. Thememory footprint
of the hash table includes the table size as well as the actual size of the
occupied grid cells. If the table is of length n, then the total space complexity
is given as:

O(n+ n ∗ (2r + 1)m) => O(n+ n ∗ c) => O(n). (17)

The maximum size of the PuddleID bucket array ’a’ is equal to the
number of occupied cells in the grid. Therefore it is given by O(n ∗ (2r +
1)m). Substituting all the values in (16), the final space complexity of TO-
BAE is given by:

Worst case : O(g + h+ a) => O(d+ n+ n ∗ (2r + 1)d), (18)

Average case : O(n). (19)

4. Experimental Results

In this section, we present some results to analyze the performance of
the proposed TOBAE algorithm, for complex shape clustering in the pres-
ence of anomalies, as compared to competitive techniques. Experiments are
conducted on synthetic DS1-DS3 datasets as shown in Figure 8.

4.1 Experiment 1: Comparison of TOBAE with Competitive
Techniques

The purpose of this experiment is to compare the performance
of proposed TOBAE algorithm with the adaptation of spectral clustering
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TOBAE SPECTRAL-STD SPECTRAL-LS

CLUTO:3 clusters CLUTO: 2clusters CLUTO: 5clusters

Figure 9. Learning of patterns from DS1 dataset using different clustering algorithm.

(SPECTRAL-STD) (Porikli and Haga 2004; Bashir, Khokhar, and Schon-
feld 2007a; Bashir, Khokar, and Schonfeld 2007b), self-tuned spectral clus-
tering with local scaling (Zelnik-Manor and Perona 2004) (SPECTRAL-
LS) and CLUTO (Zhao, Karypis, and Fayyad 2005) which is based on
CHAMELEON (Karypis, Han, and Kumar 1999). For TOBAE, the σ value
of 3.5μ was used. The experiment is conducted on 2-dimensional DS1-DS2
and 3-dimensional DS3 datasets.

Results of learning complex shape clusters using different clusters al-
gorithms for DS1-DS3 datasets are demonstrated graphically in Figures 9-11
respectively. Data points belonging to same class are represented with simi-
lar color and marker to ease the visualization of learned clusters. Analyzing
results for different datasets shows that TOBAE identifies the right number
of clusters for most of the datasets even in the presence of significant num-
ber of anomalies. It successfully filters anomalous samples and the overall
distribution of normal clusters remains unaffected by the presence of anoma-
lies in training data. Specifically for DS2 dataset where there are dense lines
of points connecting different clusters, TOBAE successfully filters them out
as anomalous samples. TOBAE automatically performs clustering in the
presence of anomalies without the requirement of specifying any manual
parameters. On the other hand, quality of SPECTRAL-LS, SPECTRAL-
STD and CLUTO is significantly affected by the presence of anomalies.
The distribution of normal samples in the identified patterns is also distorted
due to the presence of anomalies in the training data. CLUTO also requires
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TOBAE SPECTRAL-STD SPECTRAL-LS

CLUTO:9 clusters CLUTO: 3 clusters CLUTO: 15 clusters

Figure 10. Learning of patterns from DS2 dataset using different clustering algorithm.

manual specification of the number of clusters which is normally not avail-
able with unlabeled training data. The quality of CLUTO clustering varies
significantly for different number of clusters as highlighted in Figures 9-11.

Comparison of clustering algorithms is now provided by investigating
the scalability of these algorithms to the number of samples in the dataset.
The response time of clustering algorithms, for different numbers of candi-
date clusters, is presented in Table 7. We have implemented both array and
hashtable based implementation of TOBAE for comparison purposes. It is
evident from Table 7 that our proposed approach is an efficient approach that
is scalable to large number of samples in the dataset followed by TOBAE.
Variants of spectral clustering, on the other hand, are not scalable to the
number of samples in the dataset. This unscalability is due to the require-
ment of computation of an affinity matrix in spectral clustering algorithm.
It can also be observed that the array implementation, though having higher
memory requirements, is more efficient than the hashtable implementation
of TOBAE.

4.2 Experiment 2: Evaluation of TOBAE Using High-Dimensional
Data

The purpose of this experiment is to demonstrate the effectiveness of
TOBAE in the presence of high dimensional data whilst filtering noisy data.
The experiment has been conducted on LAB dataset (Khalid 2010b; Naf-
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TOBAE SPECTRAL-STD SPECTRAL-LS

CLUTO:2 clusters CLUTO:4 clusters CLUTO:6 clusters

Figure 11. Learning of patterns from DS3 dataset using different clustering algorithm.

Table 7. Comparison of running time of TOBAE with competitors.

Time taken (secs.)
DS1:1703
samples

DS2:10000
samples

DS3:3000
samples

TOBAE (array impl.) 0.26 2.81 2.17
TOBAE (hash table impl.) 0.37 4.49 13.88

CLUTO 0.97 6.53 1.71
SPECTRAL (local scaling) 67.21 1853 176
SPECTRAL (standard) 65.39 1839 172

tel and Khalid 2006; Khalid and Naftel 2010). LAB dataset is generated
by tracking moving objects over a sequence of frames in surveillance en-
vironment. The dataset contains trajectories representing four different and
distinct motion patterns. Some trajectories, different from the four known
motion patterns and representing abnormal behaviour, are also part of LAB
dataset. Low-dimensional DFT-MOD based coefficient feature space repre-
sentation of trajectories are generated as presented in Khalid (2010b). We
extracted first 6 Fourier coefficients to generate a compressed feature space
representation thus resulting in a 25 dimensional feature vector representa-
tion of trajectories. The effectiveness of TOBAE to extract hidden motion
patterns, whilst filtering anomalies, from LAB dataset is presented in Fig-
ure 12. Figure 12(a) shows complete trajectory dataset superimposed on the
background scene. Figure 12(b)-(e) presents the four clusters of trajecto-
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(a) (b) (c)

(d) (e) (f)

Figure 12. Clustering results of TOBAE using high-dimensional LAB dataset.(a) Complete
LAB dataset (b)-(e) Four normal trajectory-based motion patterns identified using TOBAE
(f) trajectories filtered as anomalous by TOBAE.

Table 8. Performance of TOBAE in higher dimensional representation of LAB trajectories
dataset while keeping the data count constant.

Number of Dimensions Time Taken (secs.)
17 1.26
25 3.19
41 9.37
57 11.03

ries that have been discovered by our proposed TOBAE algorithm. Squares
superimposed on trajectories in the figures depict the starting point of each
trajectory. Qualitative inspection shows that trajectories showing similar
motion pattern are grouped in same cluster as desired. Trajectories identi-
fied as anomalous are presented in Figure 12(f). All the trajectories that do
not belong to four planned motion groups are correctly detected as anoma-
lous and are filtered from normal motion patterns.

We further evaluate the performance of TOBAE with respect to time
efficiency. We also want to demonstrate the scalability of TOBAE to higher
number of dimensions. We generated feature space representation of LAB
dataset by having different number of dimensions. This is achieved by using
different number of top few Fourier coefficients to represent the trajectories.
We employed 4, 6, 10 and 14 top Fourier coefficients thus resulting into
17, 25, 41 and 57 dimensional representation of trajectories. TOBAE tests
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were run on a 32-bit 1.86GHz Core(TM)2 machine with 3GB RAM (.NET
framework 4.0). It is to be noted that the specified TOBAE implementation
capped at 50% CPU usage, and the single-threaded implementation utilized
only 1 of 2 cores. The time required by TOBAE to perform clustering of
LAB dataset for different number of dimensions is presented in Table 8. We
can observe from Table 8 that TOBAE is extremely efficient and it scales
well to larger number of dimensions.

5. Conclusion

In this paper, we have presented a novel parameterless density-based
clustering algorithm, referred to as TOBAE, that can automatically iden-
tify clusters in the dataset whilst filtering noise. The proposed approach
computes the cumulative density distribution of the samples in the dataset
on a grid. The approach does not require specification of manual density
threshold to identify the correct number of clusters. The proposed cluster-
ing algorithm is inspired by water accumulation in puddles on the ground,
referred to as ’tobae’ in Punjabi language. The variation in densities of data
samples in a given space is similar to variation in depressions on the ground.
For a particular water level, the puddles (clusters) are formed in areas with
depth greater than the water level. An optimal selection of water level re-
sults in identification of correct number of clusters in the dataset which is
determined automatically in our proposed clustering algorithm.

Experimental results are presented to show that proposed TOBAE-
based clustering algorithm gives better results than the competitive tech-
niques such as spectral clustering, CURE, DBSCAN and CLUTO. TOBAE
based clustering is unaffected by noise in training data and yields correct
clustering results. The competitors, on the other hand, are significantly im-
pacted by the presence of noise. We have also shown that the running time
of the algorithm is very competitive and tested it against different data sets.
TOBAE is one of a kind clustering algorithm as it does not need any su-
pervision, and can therefore be plugged into a pipeline. Debugging of the
algorithm is also simple as the N-dimensional problem analysis is broken
down to analysis of 2D plots such as ’depth vs. puddle count’ and ’nearest
neighbor distance histogram’. The TOBAE algorithm is relatively simple
and common data structures are used. The space complexity of the algo-
rithm remains O(n) and therefore the low running time is not achieved at
the expense of space. Moreover the granularity of the TOBAE grid is cus-
tomizable, as long as the final signature size (w.r.t μ) for the individual data
point remains the same. This makes it scalable to large dimensions as well.
TOBAE therefore can be applied to very low end as well as high end ma-
chines.
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