
Research Article
Determination of System Dimensionality from Observing
Near-Normal Distributions

Shahid Razzaq and Shehzad Khalid

Department of Computer Engineering, Bahria University, Islamabad 44000, Pakistan

Correspondence should be addressed to Shehzad Khalid; shehzad khalid@hotmail.com

Received 17 June 2014; Revised 31 August 2014; Accepted 4 September 2014

Academic Editor: Sher Afzal Khan

Copyright © 2015 S. Razzaq and S. Khalid. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper identifies a previously undiscovered behavior of uniformly distributed data points or vectors in high dimensional
ellipsoidal models. Such models give near normal distributions for each of its dimensions. Converse of this may also be true;
that is, for a normal-like distribution of an observed variable, it is possible that the distribution is a result of uniform distribution
of data points in a high dimensional ellipsoidal model, to which the observed variable belongs. Given the currently held notion
of normal distributions, this new behavior raises many interesting questions. This paper also attempts to answer some of those
questions. We cover both volume based (filled) and surface based (shell) ellipsoidal models. The phenomenon is demonstrated
using statistical as well as mathematical approaches. We also show that the dimensionality of the latent model, that is, the number
of hidden variables in a system, can be calculated from the observed distribution.We call the new distribution “Tanazur” and show
through experiments that it is at least observed in one real world scenario, that of the motion of particles in an ideal gas. We show
that the Maxwell-Boltzmann distribution of particle speeds can be explained on the basis of Tanazur distributions.

1. Introduction

Probability theory has acquired a special status in statistics as
it is essential tomany real life applications involving quantita-
tive analysis of large sets of data. Probability density function
(pdf) is a function that describes the probability of a random
variable taking certain values. Certain pdf occurs frequently
in statistics as they can model many natural or physical
processes and hence has acquired significant importance
in probability theory. Some of these prominent continuous
probability distributions include uniform, Laplacian, normal,
gamma, and beta distributions.

Uniform distribution is a rectangular distribution where
each observation has equal probability of occurrence. It is
majorly used in generation of pseudorandom numbers in
various simulation experiments. Laplace distribution is a
double exponential distribution and is computed in terms
of absolute distance of observation from mean instead of
squared distance as in the case of normal distribution. The
normal or Gaussian distribution is considered to be the most
widely observable and prominent distribution in statistic that

is used in variety of disciplines including social sciences,
statistics, machine learning, data mining, simulation and
modeling, and natural sciences. According to [1], this promi-
nence of normal distribution is due to two reasons. First, it
is very easy to analytically control the normal distribution
as substantial results involving normal distribution can be
derived in explicit form. Secondly, the normal distribution
has its basis in central limit theorem, which states that,
under mild conditions, the sum of a large number of random
variables drawn from the same distribution is distributed
approximately normally, irrespective of the form of the
original distribution.

There is an interesting relationship between distribution
of the data points and their vector components. It has
been observed that the uniform distribution of data point
vectors in high dimensional ellipsoidal models give near
normal distribution for the vector components. As the num-
ber of vector components increases, the generated density
distribution would get flatter and the observed distribution
becomes a complete uniform distribution in the presence
of actual number of vector components. This phenomenon
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gives rise to an important question of whether the reverse
of this phenomenon is possible. This implies that, given a
normal distribution of data points with certain number of
observable dimensions, we can predict the dimensionality of
the parent model with the assumption that the parent model
with the assumption that the parent model is ellipsoidal
and exhibits uniform data point distribution. This paper
attempts to answer this question for volumebased and surface
based ellipsoidal models. We further target to show that the
dimensionality of the latent model, that is, the number of
hidden variables in a system, can be calculated from the
observed distribution.

The remainder of this paper is organized as follows.
Section 2 presents a brief review of frequently occurring
probability density function (pdf) and their application in
modeling various physical/natural processes. In Section 3,
Monte Carlo method is used to show how uniform distribu-
tions in ellipsoidal models give near normal distributions for
single variables. Furthermore, the mathematical basis of the
new distributions is discussed. Section 4 presents a method
for determining the dimensionality of a latent (uniformly
distributed) ellipsoidal model from any observed near nor-
mal distribution. Section 5 demonstrates via experiments that
the new distribution is observed in real world scenarios and
that other distributions can be explained on the basis of this
newdistribution.The last section summarizes the finding and
gives direction for the future work.

2. Background

The subject of probability theory has gained significant
importance as it is the foundation on which all the statistics
are generated. It becomes a basis of modeling anything
that can be considered as a random process. The variety of
commonly occurring probability density distributions exists
in literature. The difference between two i.i.d. exponential
random variables is governed by a Laplace distribution. Var-
ious applications of Laplace distributions include signal pro-
cessing [[2], speech recognition [3]], credit risks in finance
engineering [4], and Kalman Filter [5–11]. The Laplacian of
Gaussian distribution has been applied in spectral theory
[12, 13], eigenspace decomposition [14], and so forth.

Normal distribution is a very commonly observable
distribution which can be perceived as a function that tells
the probability of data point falling between any two real
limits. The observation from a normal distribution tends
to pile up around a particular value, referred to as mean,
instead of spreading uniformly in the state space 𝑅, thus
having a symmetric distribution about its mean. The normal
distribution is usually denoted by 𝑁(𝜇, 𝜎

2
) [15] where 𝜇 and

𝜎 are the mean and standard deviation, respectively. It has an
attractive capacity of generating simple models for complex
real life phenomena to a relatively good degree of accuracy.
Normal distribution has been applied in variety of fields. In
data mining, normal distribution has been excessively used
for clustering,modeling, classification, and novelty detection.
Multivariate Gaussian [16–18] and Gaussian Mixture Models
[13, 19–22] are well-known statistical models for modeling

and classification of variety of data. Normal distribution
has also been widely used for novelty detection [16, 22–
24]. One of the important reasons of dominance of normal
distribution is its basis in central limit theorem which
explains the ubiquitous occurrence of the normal distribution
in nature. A central limit theorem is based on any theory
from a set of weak-convergence theories [25].They all express
the fact that a sum of many independent and identically
distributed (i.i.d.) random variables having finite variance
will tend to be distributed according to normal distribution.
Central limit theorem and in turn normal distribution has
its wide application in sampling. Other applications and
characterization of normal distribution have been discussed
in detail by [26, 27].

The analysis of low dimensional projections of higher
dimensional distributions was done by Sudakov [28]. It was
observed that uniform distribution of data points in high
dimensional convex bodies gives near normal distributions
in lower dimensions [29–31]. Building on their work, we
experiment with the reverse, that is, determination of dimen-
sionality of the original (uniform) distributed model, from
the observation of its projections in lower dimensions. As
a case study, we apply the concept to ideal gasses, that
of determining the number of particles in the system by
observing the speed distribution of its particles.

In this paper, we present a new kind of distribution as an
alternative to the Normal Distribution.The advantages of the
new distribution are

(i) for a given system representing the bounds of the
observed variable. Unlike normal distribution, the
new distribution restricts the range of observed vari-
able(s) according to system’s model,

(ii) using the interdependence of the model variables to
explain the formation of observed distributions,

(iii) allowing the number of hidden system variables
(dimensions) to be determined from the observed
distributions,

(iv) having backward compatibility with the normal dis-
tribution (for medium to highmodel dimensionality)
in characteristics other than those mentioned above.

3. Uniform Distribution in Ellipsoidal Models

Before a formal discussion can be carried out on the subject,
some terms need to be identified. Model here refers to
mathematical descriptions of systems. Systems can range any-
where from physical system as in the ones found in physics,
biology, metrology, and so forth to computational ones as in
computer science and simulations. Ellipsoidal models refer
to systems which can be modeled by mathematical equations
that describe an ellipse. The equation below represents an 𝑛-
dimensional ellipse:

𝑛

∑

𝑖=1

𝑥
2

𝑖

𝑎
2

𝑖

= 1. (1)

Each of the𝑥
𝑖
variables in the system takes up a dimension

in the ellipsoidal model. The maximum value of a dimension
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is bounded by the value of radius 𝑎
𝑖
of that dimension. A

special case of the ellipsoidal model is the spherical model
where all dimensions of the system have the same maximum
value (i.e., radius). This spherical model is represented below
with 𝑟 as the said radius:

𝑛

∑

𝑖=1

𝑥
2

𝑖

𝑟2
= 1 OR

𝑛

∑

𝑖=1

𝑥
2

𝑖
= 𝑟
2
. (2)

The given ellipsoidal models, whether sphere of ellipse in
shape, represent a system. For the 𝑛 dimensions or variables
in the system, any combination which satisfies the given
equation is said to constitute a data point vector in the
ellipsoidalmodel.The system is therefore defined by the set of
variables and the limiting condition (in this case the radius).

The ellipsoidal models represented above are one of two
types of models possible. The one presented above, owing to
the fact that they are represented by a mathematical equation
(as opposed to an inequality), is a surface based (shell)
ellipsoidal model; that is, all data points take up positions on
the outer surface of the 𝑛-dimensional ellipsoid. A second
type of ellipsoidal model is the volumetric model, which
constitutes regions both on the surface of the ellipsoid and
on those inside.Therefore the whole volume of the ellipsoidal
model is covered by the model inequality formula, which is
given as

𝑛

∑

𝑖=1

𝑥
2

𝑖

𝑎
2

𝑖

≤ 1. (3)

Uniform distribution in any of these models refers to the
distribution, in 𝑛dimensions, of the data points such that they
are distributed evenly across the model, with no preference
for any particular region of the model.

What follows are an empirical analysis for discrete uni-
form distribution and a mathematical/theoretical analysis
for continuous uniform distribution of data points in the
model. Empirical analysis primarily consists of generating
statistically uniform 𝑛-dimensional model data using ran-
dom variables. This method is also known as the Monte
Carlo method. This empirical method is supplemented with
another approach, that is, that of generating discrete evenly
spaced data points. For both cases, the observed data dis-
tribution in lower dimensions is compared to the original
(uniform) one. The theoretical analysis of the observed
behavior consists of using mathematical equations for 𝑛-
dimensional volumetric as well as surface slices. After the
logical analysis of the observed distributions, these new
distribution curves are named.

3.1. UniformDistributionwithMonte CarloMethod. Uniform
distribution of data points in an 𝑛-dimensional model can
be approximated using Monte Carlo method. Generally, the
number of possible combinations of variables in a model
increases exponentially with the number of dimensions of
the model. Monte Carlo method has the advantage of being
saleable for higher dimensions while roughly preserving
uniformity of data point distribution. Using this method,
random values are generated for each of the 𝑛 dimensions

such that the combined set of values satisfies the conditions
of the model. For a volumetric ellipsoidal model, this would
be data points within the volume defined by the ellipsoid.
Whereas, for surface based models, this would be data
points on the surface only, with no data point on the inside.
Generation of data points in this manner does not guarantee
a completely uniform distribution, but, for the purpose of
statistical inference, it is sufficient and, more importantly,
scalable to higher dimensions.

We use Monte Carlo method on volumetric ellipsoidal
models. Both the general case of ellipse models and the
special case of spheremodels are used. 100,000 data points are
generated randomly for models of different dimensionality.
Total of 11 different 𝑛-ball (𝑛-dimensional spheres) and 𝑛-
ellipse models are used. Of the 𝑛 variables or dimensions of
the model, the distribution of any one variable is observed
in across the range of possible values for the dimension. The
choice of variable out of the 𝑛 possible options is arbitrary.

Equation for volumetric 𝑛-ball is

𝑛

∑

𝑖=1

𝑥
2

𝑖
≤ 𝑟
2
. (4)

Equation for volumetric 𝑛-ellipse is specified in (3).
Each data point of the models is an 𝑛-dimensional vector,
with each component representing a dimension. The value
of each vector component is generated from a computer
based pseudorandom number generator. To avoid any bias
in the generation and selection of vectors, values of all the
constituent components are filled for a vector before it is
tested for compliance using model constraints.

If the models are visualized in all 𝑛-dimensions, the
distribution of vectors would be somewhat uniform across
the model, with no particular concentration of vectors in any
region of the model. If small pockets of greater vector density
are found, that would be purely coincidental as the model
constraints do not impose any such bias. On the other hand,
if a subset of the dimensions is observed, the distribution
of vectors does not stay uniform. For our case, we show the
observation of distribution of a single vector component, that
is, only one dimension, and the same dimension is observed
across the 100,000 vectors (data points). This is analogous
in the real world to observing a single variable, where the
information of the other related variables is not known.
These distributions are shown for different 𝑛-ball models in
Figure 1. Similar process is repeated for 𝑛-dimensional ellipse
models and the results shown in Figure 2.The radius a1 of the
first dimension is kept at 0.5 to allow comparison with 𝑛-ball
histograms, while the radius of the other dimension is varied
as described in the description of Figure 2.

The first distribution, of the set of distributions in
Figures 1 and 2, shows a more or less uniform distribution.
There are spikes which is the concentration of data points
in certain bins, but they are more or less arbitrary, with no
particular bias towards any side or region. This is because
all of the vector components of the 1-dimensional model
(i.e., 1 of 1 vector component) are being observed. This is,
however, not true for other distributions, where only 1 out
of the 𝑛-dimensions of the model is being observed. When
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Figure 1: Distribution of a vector component for different 𝑛-ball models. The vector component can take a range of values between −0.5
(min) and +0.5 (max), and therefore the 𝑛-ball model has radius 𝑟 = 0.5. The distributions represent the count of data points that lie in any of
400 bins dividing the [−0.5,0.5] range. ((a), (b), (c)) 1-ball, 2-ball, and 3-ball. ((d), (e), (f)) 4-ball, 5-ball, and 11-ball.

the difference of the actual versus observed dimensions, that
is, the value of (𝑛 − 1), is low, the observed distribution
is not particularly interesting. But, for large values of 𝑛 −

1, the distribution starts to have a striking resemblance
with the normal distribution. As the dimensionality of the
data models is increased, fewer data samples are recorded
at the extremities of dimensions owing to the geometrical
restriction of themodel, as compared to the center.Therefore,
fewdata points are found closer to−0.5 and+0.5, as compared
to the center at 0.0, and result in a relatively high histogram
bin count at the center, as compared to the two ends. The
geometrical restrictions of the sphere and ellipse basedmodel
have more constricted at the extremities as compared to the
center and result in the curve distributions as seen in Figures
1 and 2.

This phenomenon, however, interesting, is not exhibited
for every model that is constricted at the extremities.𝑁-cross
polytope is a model which has decreased volume away from
the center and is represented by the equation:

𝑛

∑

𝑖=1

𝑥𝑖
 ≤ 𝑅. (5)

Here, the sum of the values of the vector components is
capped at a constant 𝑅. Figure 3 shows the distribution of
vector components for 𝑛-cross-polytope models. It is clear
that the observed distribution is different from the ones
observed in Figures 1 and 2. In fact, the observed distribution
of Figure 3 resembles that of the Laplacian distribution. It

is also not surprising that the power of the Euler’s constant
in the equations representing the Laplacian distribution is
linear, very much like the equation of the 𝑛-cross polytope.
Nevertheless, this discussion is outside the scope of the cur-
rent paper and the rest of the paper focuses on the comparison
of distributions of vector components in ellipsoidal models
with the normal distribution.

A visualization of the higher dimensions of the ellipsoidal
models is not possible, but the same phenomenon can be
observed visually in lower dimensions. Figure 4 helps explain
the behavior in 2-dimensional sphere and ellipse models.
Here, the model visualization shows uniform distribution
when considering all (2) dimensions of the model but shows
nonuniform distributionwhen observing a single dimension.
The fact that the shape of the observed distribution is the
same for both spheres and ellipses can appear nonintuitive
but can be explained if scaling is considered. For the vertically
elongated ellipsoidal model of Figure 4, the number of data
points at the center is certainly higher than that of the corre-
sponding sphere, but the ratio of the neighboring bin count
remains the same for both sphere and ellipses. Therefore, for
a 2D ellipse, with vertical radius twice that of the horizontal
one, the bin count at the center is twice that at the center of
sphere, but scaling vertically by 0.5 shows that there is no
actual difference between the distributions. In other words,
the ratio of the decrease in the number of data points for
both models, as we move away from the center, is the same.
Bothmodels exhibit the same kind of distribution curve.This
phenomenon is observed in higher dimensional models as
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Figure 2: Distribution of a vector component for different 𝑛-ellipse models. The radius of the observed dimension (vector component) is 𝑎
1

= 0.5, as with 𝑛-ball models, again 400 bin histograms are used.The radii for the different dimensions are 𝑎
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= 0.08. ((a)–(f)) 1-ellipse, 2-ellipse, 3-ellipse, 4-ellipse, 5-ellipse, and 11-ellipse.
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Figure 3: Distribution of a vector component for different 𝑛-cross polytope models. The value of constant 𝑅 is set at 0.5 again using 400 bin
histograms. The distribution is particularly different from the normal distribution. ((a) to (c)) 2-cross-polytope, 3-cross-polytope, and 6-
cross-polytope.

well and results in the similarity of the distributions for sphere
and ellipse based models.

Statistical inferences can be drawn from pseudouniform
distributions generated in Monte Carlo methods. The plausi-
bility of the inference, however, is dependent on the random
number generator used for creating pseudouniform distribu-
tions. For amore robust analysis of the phenomenon, discrete
uniform distributions need to be created instead. The brute
force variable permutations give more uniform distribution
in the discrete variable space but have the disadvantage
of dimensionality explosion for high dimensional models.

The number of data points generated in high dimensions
grows exponentially and the task becomes intractable. Nev-
ertheless, an analysis of manually generated discrete uniform
distribution for relatively lower dimensions is given next.

3.2. Discrete Uniform Distribution in Ellipsoidal Models. In
order to obviate any statistical bias due to Monte Carlo
method, particularly the pseudorandom number generator,
discrete uniform distributions have been generated for the
ellipsoidal model. This ensures that all regions in every
dimension have the exact same data point density. The
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Figure 4: Two-dimensional plot of data points in a 2-dimensional sphere (a) and ellipse model (b). The distribution is of uniform type when
observing all dimensions but becomes skewed when observing fewer (one) dimensions. The histogram of sphere (c) and ellipse (d) data
points shows greater data point count at the center, that is, where the value of dimension is 0, as compared to the extremities. Histogram bins
maintain the same relative ratio for both sphere and ellipse.

method of generating such data points is very simple. All
permutations of the discrete values of the dimensions are
tested for model conformity. The generated model is similar
to the one seen in Figure 4.

Discrete uniform distributions were created for sphere
and ellipse based models. Figure 5 shows the distribution
curve when observing a single dimension. Both spherical and
elliptical models in 1 dimension are represented by a line and
can be seen as the uniform distribution (horizontal red line).
The distribution curves of Figure 5 have been normalized
in the vertical axis and therefore the range of values of
the curve in the vertical axis is in the range [0,1.0]. This
normalization allows for comparison between distribution
curves generated for models of different dimensionality. The
next curve after the uniform red line of the 1-dimensional
model is the green curve of the 2D models (a 2D circle and
a 2D ellipse). The distribution curve is no longer uniform,
as the original uniform distribution was created in higher

dimensions. The distribution curve for 3D sphere and 3D
ellipse comes next in blue color. The curve at this point
is still convex shaped, with no change in the sign of the
2nd differential of the curve. Distribution curves for the 4-
dimensional spherical and elliptical models are the first to
show sign of concavity. Direction of gradient change reverses
twice in the curve and once in each half of the distribution.
Moreover, the distribution curve for higher dimensions is
narrower as compared to that for the lower dimensions. For
subsequent models, from 5 to 7 dimensional spheres and
ellipses, the resultant distribution curves are still narrower
and increasingly give appearance of a normal distribution.

Let the number of dimensions, for which the data point
distribution was being observed, be represented by 𝑘. For
Figure 5, the value of 𝑘 = 1 as only 1 of 𝑛 total dimensions
of the model is being observed. The choice of dimension
being viewed is arbitrary and does not affect the shape of
the distribution. The distribution curves record the density
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Figure 5: Distribution curves for one vector component (𝑘 = 1) in spherical (a) and elliptical (b) models. (a) Seven spherical models of
different dimensionality, ranging from 1-ball to 7-ball, with radius 𝑟 = 25. As the dimensionality of the model increases, the original uniform
distribution of vectors is seenmore like the normal distribution for its vector components. (b) Seven ellipsoidal models ranging from 1-ellipse
to 7-ellipse. Here radii of the ellipse are 𝑎

1
= 25, 𝑎

2
= 50, 𝑎

3
= 12.5, 𝑎

4
= 75, 𝑎

5
= 8.33, 𝑎

6
= 100, 𝑎

7
= 6.25, 𝑎

8
= 125, 𝑎

9
= 5, 𝑎

10
= 150, and 𝑎

11
=

4.16.

of the data points as observed with respect to 𝑘 of 𝑛 total
dimensions. If the value of 𝑘 was gradually increased from 1
to 𝑛, the generated density distribution would become flatter
and spread out further into the 𝑘 dimensional distribution
space. At 𝑘 = 𝑛, the observed distributionwould be a uniform
distribution in 𝑘 dimensions.

As discussed earlier, one drawback of the use of discrete
uniform distribution is the dimensionality explosion for
higher dimensions. For the given radius of the spheres and
ellipses (𝑟 = 25 for Figure 5), the process of data point gen-
eration beyond 7 dimensions quickly becomes intractable.
Moreover, with discrete variable values, the intermediate
vector component values are not being modeled. This is
handled next using mathematical analysis for continuous
uniform distribution.

3.3. Analysis of ContinuousUniformDistribution in Ellipsoidal
Models. For the analysis of the ellipsoidal modal distribu-
tions in the continuous domain, we have to use mathematical
tools. The two types of models discussed earlier, namely, the
surface based models and volume based models, rely on the
concept of space for the data points. The greater the surface
area or volume, the greater the number of distinct data points
that can fit the space will be. In other words, the number
of vectors, having their vector component value in a certain
range (of the observed component), is directly proportional
to the volumetric slice of the entire model in that range
of the vector component. To get the complete distribution
curve, consisting of different ranges of the observed vector
component, we can integrate volumetric slices of the model
over the range of a scalar component.

Table 1: Volume and surface area of 𝑛-ball spherical models as a
function of the model dimensionality.

Model 1-ball
(1D line)

2-ball
(circle)

3-ball
(sphere)

𝑛-ball
(𝑛D sphere)

Volume 2𝑟 𝜋𝑟
2

4/3𝜋𝑟
3

𝐶V𝑛𝑟
𝑛

Surface area — 2𝜋𝑟 4𝜋𝑟
2

𝐶
𝑠𝑛
𝑟
𝑛−1

For a spherical model, the volume is proportional to the
power of the radius and seen in Table 1. For simplification,
we consider an 𝑛-ball model of unit radius (𝑟 = 1). The
integration of volumetric slice over the scalar component is
given as

Volume = ∫

𝑟

−𝑟

Volumetric Slice ∗ 𝑑𝑥. (6)

Here, “𝑥” is the observed vector component. The generic
formula for a unit 𝑛-ball is

𝑉
𝑛
= 𝐶V𝑛 ⋅ ∫

1

−1

(1 − 𝑥
2
)
(𝑛−1)/2

𝑑𝑥. (7)

The integrand ((1 − 𝑥
2
)
(𝑛−1)/2

) represents the volumetric
slice for an 𝑛-dimensional model, when it is integrated across
one dimension 𝑥. The constant 𝐶V𝑛 has different values for
different 𝑛-balls, as seen in Table 1. As discussed earlier, we
are interested in the volumetric ratios of different ranges
and not in the absolute value of the volume. Also the
distribution curves are normalized afterwards, which renders
constants like 𝐶V𝑛 irrelevant. Figure 6(a) shows the plot of



8 Abstract and Applied Analysis

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

−25 −20 −15 −10 −5 0 5 10 15 20 25

(a)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
−25 −20 −15 −10 −5 0 5 10 15 20 25

0.9

1

(b)

Figure 6: (a) Plot of the vertically normalized volumetric curve of 50 models in the range of 2-ball to 51-ball. Blue curves show the integrand
(1 − 𝑥

2
)
(𝑛−1)/2 as a function of the vector component 𝑥 and represent the distribution of data points as a function of the observed vector

component 𝑥. (b) Plot of the vertically normalized surface area curve of 50 models in the range of 2-ball to 51-ball. Blue curves show the
integrand (1 − 𝑥

2
)
(𝑛−2)/2 as a function of the vector component 𝑥. Notice the presence of flat line at 𝑦 = 1.

the normalized volumetric curve or integrand ((1−𝑥2)(𝑛−1)/2)
as a function of the vector component 𝑥. The curves have
been scaled across (along the dimension 𝑥) here by a factor
of 25 to allow for curve comparisons with discrete uniform
distribution curves of Figure 5.

The above integrands are for volume based ellipsoidal
models, that is, models that allow data point vectors to
be generated anywhere within the volume of the ellipsoid.
Distribution curves for surface based ellipsoidal models need
to be calculated aswell. For a sphericalmodel, the surface area
is proportional to the power of the radius as seen in Table 1.
The integration of surface slice over the scalar component is
given as

Surface Area 𝑑 = ∫

𝑟

−𝑟

Surface Slice ∗ 𝑑𝑥,

𝑆
𝑛
= 𝐶
𝑠𝑛
⋅ ∫

1

−1

(1 − 𝑥
2
)
(𝑛−2)/2

𝑑𝑥.

(8)

The constant 𝐶
𝑠𝑛

also has different values at different
dimensions as seen in Table 1. Once again, 𝐶

𝑠𝑛
can be

ignored as we are interested in the ratio of the surface
slices of spherical models. Moreover, vertical normalization
of the surface area curve makes the distribution agnostic of
multiplication with constants. Figure 6(b) shows the plot of
the normalized surface area curve or integrand (1 −𝑥2)(𝑛−2)/2
as a function of the vector component 𝑥. Again the curves
have been scaled up horizontally by a factor of 25 for the
purpose of comparison.

The distribution curves of the volumetric and surface
based models look identical, except for a one dimensional
shift. The outermost (semicircular) curve of the volumetric
model corresponds to 2-ball, whereas the one for surface
based models corresponds to 3-ball. The curve for 2-ball in
surface based model is a flat line at 𝑦 = 1. The shift of
dimension is due to the difference in the exponent of the
radius between the formulas representing volume and surface
area. The curves are otherwise the same.

The above discussion and derivations are for a spherical
model of unit radius. For spherical models having radius
values other than 1, the corresponding distribution can be
reached by multiplying the horizontal dimension by the said
radius. This is equivalent to scaling the distribution curve
horizontally. Similarly, instead of deriving separate equations
for elliptical models, the same equations can be used along
with horizontal scaling factors equal to the radius of the
observed dimension.

3.4. Naming the New Distribution. Before proceeding, we
give formal nomenclature for the observed distribution
curves. The distributions observed above for the ellipsoidal
models are a result of the projection of a higher dimensional
uniform distribution, over a lower dimensional space. The
distributions are projections of the actual (uniform) distribu-
tion and hence we give it a name “Tanazur” (pronounced “te-
na-zer”), which is Urdu for perspective. Unlike the normal
distributions, the Tanazur distributions are a set of distinct
distribution curves. With normal distributions, scaling along
the variable’s axis gives curves for other standard deviation
values. On the contrary, no scaling can equate Tanazur
distributions of different dimensionality. This has been seen
earlier with the inflection point positions.

For now, we represent univariate Tanazur Distribution as

𝑋 ∼ 𝑇 (𝑟, 𝑛) . (9)

Here, 𝑛 is the dimensionality of the ellipsoidal model
and 𝑟 is the radius along the observed dimension. A more
formal description and representation of the distribution will
be given in Section 4.

4. Model Dimensionality Determination from
Vector Component’s Distribution Curve

As we have seen, uniform distribution of data point vectors
in 𝑛-dimensional ellipsoidal models (both volumetric and
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Figure 7: Inflection points of the curves shown with a black asterisk. Blue curves represent the Tanazur distributions whereas the red curves
represent the normal distribution. Outermost Tanazur distribution is 𝑇(25, 2) and innermost is 𝑇(25, 51).

surface base) gives near normal distributions for the vector
components. What we determine now is whether the reverse
is possible; that is, given a normal looking distribution on
a variable, can the dimensionality of the parent model be
found, if the parent model is assumed to be ellipsoidal and
exhibits uniform data point distribution. As an example,
if the innermost blue curve of the two plots in Figure 6
was observed, the intended method should indicate that the
dimensionality of the parent model is 51.

Before a discussion can be carried out for the dimension-
ality determination, some features of the distribution curves
of Figure 6 need to be mentioned. All the distribution curves
inside each plot of Figure 6 have their own characteristic
shape. No two curves of the plot are the same, regardless
of any scaling transform that is applied in the horizontal
axis. The relative ratios of different sections of the curves are
maintained even after scaling. In other words, changing a
dimensional radius of a spherical model to form an elliptical
model produces a distribution curve which can be scaled
down along the observed dimension to yield the distribution
of the spherical model. This is similar to the normal distri-
bution where curves of different standard deviation are only
(horizontally) scaled versions of each other. But, withTanazur
distribution, the characteristics of the curves corresponding
tomodels of different dimensionality are different. No scaling
can equate such curves. A geometricalmeasure is required for
identification of these curves, which are shown in Figure 6
plots.

A geometrical feature, called the inflection point, is capa-
ble of identifying the different Tanazur distribution curves
and is shown in Figure 7. Inflection points on a curve have
the characteristic property that the second derivative of the
curve at their particular location reaches 0. More accurately,
the direction of gradient change switches directions (from
+ive to −ive or vice versa). The vertical position of the
inflection points of normalized distribution curves is always

scale-invariant. In other words, the vertical position, as a
percentage of the vertical length, does not change for a given
curve regardless of scaling along the horizontal axis (i.e.,
change in dimensional radii of the model). The same can be
said for the normal distribution. Figure 7 shows two different
normal distribution curves corresponding to two different
standard deviation values. As can be seen, the height of
the inflection point of these red curves remains the same.
The characteristic position of the inflection point of the
normal distribution is approximately 60.65%, upwards from
the horizontal axis. For a normal distribution centered on the
origin, this point is calculated below:

𝑓 (𝑥) =
1

𝜎√2𝜋
𝑒
−𝑥
2
/2𝜎
2

,

𝑓

(𝑥) =

(𝑒
−𝑥
2
/2𝜎
2

) 𝑥
2
− 𝜎
2

𝜎4√2𝜋
.

(10)

Value of 𝑥 for which the normal distribution has 2nd
derivative of 0 is

0 =

(𝑒
−𝑥
2
/2𝜎
2

) 𝑥
2
− 𝜎
2

𝜎4√2𝜋
,

0 = (𝑥
2
− 𝜎
2
) ,

𝑥 = ±𝜎.

(11)

Therefore, the inflection point of the normal distribution
is at the 1st standard deviation from themean.The value of the
inflection point in the vertical axis is given by 𝑓(𝜎). Consider

𝑓 (𝜎) =
1

𝜎√2𝜋
𝑒
−𝜎
2
/2𝜎
2

=
1

𝜎√2𝜋𝑒
. (12)

In order to arrive at the normalized vertical position of
the inflection point, that is, as a percentage of the maximum
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Table 2: 𝐼
𝑦
of 𝑇(𝑟, 𝑛) for different dimensionality (𝑛) of the parent volume based ellipsoidal model.

𝑛 1–3 4 5 6 7 8 9 10 100 1,000 10,000 100,000 1 × 10
8

𝐼
𝑦
= 𝑡(𝜎

)/𝑡(0) N/A 0.35355 0.44444 0.48714 0.51200 0.52828 0.53978 0.54832 0.60188 0.60608 0.60649 0.60653∗ 0.60653∗∗

∗First six decimal points of the inflection point vertical are the same as those for normal distribution. ∗∗First eight decimal points of the inflection point vertical
are the same as those for normal distribution.

height of the normal distribution, the peak value of 𝑓(𝑥) is
required. This peak value of the normal distribution is at the
mean; that is, 𝑥 = 0:

𝑓 (0) =
1

𝜎√2𝜋
𝑒
−0
2
/2𝜎
2

=
1

𝜎√2𝜋
. (13)

For the normal distribution, vertical position of the
inflection point, as a percentage of the vertical range, is given
as

𝑓 (𝜎)

𝑓 (0)
=
1/𝜎√2𝜋𝑒

1/𝜎√2𝜋
,
𝑓 (𝜎)

𝑓 (0)

=
1

√𝑒
= 0.60653065971263342360379953499118

≈ 60.6531%.

(14)

Considering volume based ellipsoidal models, the
Tanazur distributions are represented as

𝑡 (𝑥) = (1 − 𝑥
2
)
(𝑛−2)/2

𝑡

(𝑥) = (𝑛 − 1) (1 − 𝑥

2
)
(𝑛−5)/2

((𝑛 − 2) 𝑥
2
− 1) ,

0 = (𝑛 − 1) (1 − 𝑥
2
)
(𝑛−5)/2

((𝑛 − 2) 𝑥
2
− 1) .

(15)

Value of 𝑥 for which the Tanazur distributions have 2nd
derivative of 0 is

0 = ((𝑛 − 2) 𝑥
2
− 1) ,

𝑥 = ±√
1

(𝑛 − 2)
.

(16)

Let this value of 𝑥 be denoted as 𝜎. Consider

𝑥 = ±𝜎

. (17)

Again, to get the vertical position of the inflection point
as a percentage of the vertical range, we need to divide 𝑡(𝑥)
by 𝑡(0):

𝑡 (±𝜎

) = (1 − (±√

1

(𝑛 − 2)
)

2

)

(𝑛−1)/2

,

𝑡 (𝜎

) = (1 −

1

(𝑛 − 2)
)

(𝑛−1)/2

(18)

and 𝑡(0) is given as

𝑡 (0) = (1 − 0
2
)
(𝑛−1)/2

= 1. (19)

If “𝐼” represents the inflection point of 𝑡(𝑥), then 𝐼
𝑦
is

given as

𝑡 (𝜎

)

𝑡 (0)
= 𝐼
𝑦
=
(1 − 1/ (𝑛 − 2))

((𝑛−1)/2)

1

= (1 −
1

(𝑛 − 2)
)

((𝑛−1)/2)

.

(20)

Table 2 shows the normalized vertical position 𝐼
𝑦
of the

inflection points Tanazur distributions and is visualized in
Figure 7. The value of 𝐼

𝑦
for 𝑇(𝑟, 𝑛) appears to converge to

that of the normal distribution (≈60.6531%) as the value of 𝑛
is increased. This is discussed in Section 4.1.

Using the framework of inflection point positions, we can
handle dimensionality determination of a parent ellipsoidal
model from the near normal distribution of any of its vector
components. If 𝐼

𝑦
is known, the dimensionality of the parent

model can be determined by solving for 𝑛 in (20). Value of 𝐼
𝑦

can also be compared to a table, like the one given above, to
get the correct model dimensionality.

The calculations of 𝐼
𝑦
for different 𝑇(𝑟, 𝑛) have been done

while assuming volumetric ellipsoidal models. As discussed
earlier, the Tanazur distribution for both volume based and
surface based models is the same, except for a difference
of one dimension. For surface based ellipsoidal models, the
dimensionality of the parentmodel is onemore than the value
calculated for volume based models.

Inflection point is one of the features of 𝑇(𝑟, 𝑛) (and also
𝑁(𝜇, 𝜎

2
)) that can be used for dimensionality determination.

Another feature that can be used is the length of the tail in the
distribution.This, however, is not discussed here and we base
our discussion on the inflection point vertical (𝐼

𝑦
).

4.1. Similarity between Tanazur and Normal Distributions.
Wehave already seen fromFigure 7 that as the dimensionality
of the parent ellipsoidal model is increased, the inflection
point vertical for 𝑇(𝑟, 𝑛) appears to converge to that of
𝑁(𝜇, 𝜎

2
). The difference between 𝐼

𝑦
of 𝑇(𝑟, 𝑛) and 𝑁(𝜇, 𝜎

2
)
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Figure 8: (a) Plot of the difference between 𝐼
𝑦
of 𝑇(𝑟, 𝑛) and𝑁(𝜇, 𝜎

2
). Horizontal axis represents number of dimensions 𝑛 while the vertical

axis shows delta in 𝐼
𝑦
. (b) Comparison of the blue 𝑇(𝑟, 𝑛) curve and the red 𝑁(𝜇, 𝜎

2
) curve when the value of 𝑛 = 30 (outer curve) and

𝑛 = 100 (inner curve). Tanazur and Normal distribution curves have been superimposed where red curves represent the normal distribution
(𝑁(0, 90.25) and𝑁(0, 34.03)) and the background blue curves represent Tanazur distribution (𝑇(40, 30) and 𝑇(44, 100)).

is shown in Figure 8. The limit of 𝐼
𝑦

= 𝑡(𝜎

)/𝑡(0), as 𝑛

approaches infinity, is given as

𝐼
𝑦
=

𝑡 (𝜎

)

𝑡 (0)
= lim
𝑛→∞

(1 −
1

(𝑛 − 2)
)

((𝑛−1)/2)

= lim
𝑛→∞

(
𝑛 − 3

𝑛 − 2
)

((𝑛−1)/2)

,

𝐼
𝑦
=

𝑡 (𝜎

)

𝑡 (0)
=

1

√𝑒
=
𝑓 (𝜎)

𝑓 (0)

= 0.606530659712633423603 ≈ 60.6531%.

(21)

Given infinite dimensions of an ellipsoidal model, the
inflection point of the model’s distribution curve, when
observing any of the dimensions, will tend towards the
inflection point of the normal distribution. The distribution
curve for a high dimensional model (𝑛 = 100) is shown in
Figure 8(b) and the superimposed curves show that there is
minimal difference between Tanazur and Normal distribu-
tions.

Even though it is clear from Figure 8 that 𝑇(𝑟, 𝑛) and
𝑁(𝜇, 𝜎

2
) are very similar at higher dimensions and that their

inflection point verticals (𝐼
𝑦
) converge at the limit, the curves

themselves cannot be equal. This is because the upper limit
of 𝑥 is unbounded in case of 𝑁(𝜇, 𝜎

2
), whereas it is limited

in case of 𝑇(𝑟, 𝑛) by the dimensional radius 𝑟. In other
words, normal distribution has an infinitely long tail whereas
Tanazur distribution does not.

4.2. Formulation of Tanazur Distribution. Like other distri-
butions, Tanazur distribution is also of two kinds: univariate
and multivariate. The notation𝑋 ∼ 𝑇(𝑟, 𝑛) is for the univari-
ate Tanazur distribution. It assumes that only 1 dimension

of the 𝑛-dimensional ellipsoidal model is being observed.
Here 𝑟 refers to the radius of the observed dimension, in the
ellipsoidal model.

Multivariate Tanazur distribution occurs when more
than one dimension of the model is observed, leading to a
multidimensional Tanazur distribution. If the dimensionality
of the uniformly distributed ellipsoidal model is 𝑛 and the
Tanazur Distribution is being observed in 𝑛

 dimensions,
then the multivariate Tanazur Distribution is denoted as

𝑋 ∼ 𝑇 (𝑟, 𝑛, 𝑛

) . (22)

Here 𝑟 is a vector of length 𝑛, representing the radii of the 𝑛
dimensions in the ellipsoidal model. The resultant vector 𝑋
has 𝑛 dimensions.

Probability distribution function requires that the area
under the curve be equal to 1. The probability density
function (pdf) for the univariate Tanazur Distribution can be
formulated as

𝑡 (𝑥; 𝑟, 𝑛) =

(𝑟
2
− 𝑥
2
)
((𝑛−1)/2)

∫
𝑟

−𝑟
(𝑟2 − 𝑥2)

((𝑛−1)/2)

𝑑𝑥

. (23)

The factor in the denominator ensures that the area under
the curve is equal to 1. The function returns the probability
of observing a value 𝑥 for a dimension of radius 𝑟 in an 𝑛-
dimensional volume based ellipsoidal model. For a surface
based ellipsoidal model, the function returns the probability
of observing a value 𝑥 for a dimension of radius 𝑟 in an 𝑛 +

1 dimensional model. The cumulative distribution function
(cdf) is given as

𝑡 (𝑥; 𝑟, 𝑛) =

∫
𝑥

−𝑟
(𝑟
2
− 𝑥
2
)
((𝑛−1)/2)

𝑑𝑥

∫
𝑟

−𝑟
(𝑟2 − 𝑥2)

((𝑛−1)/2)

𝑑𝑥

. (24)
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So far we have used integral forms of the probability den-
sity function (pdf) for the univariate Tanazur Distribution.
For easy mathematical analysis, we demonstrate calculation
of the closed form for a given model dimensionality. The
probability of a variable taking up certain value in the filled
3D spherical model is equal to the ratio of the area of sphere
slice at that value and the total sphere volume. This can be
written as

𝑡 (𝑥; 𝑟, 3) = 𝜋 × (
𝑟
2
− 𝑥
2

(4/3) 𝜋𝑟
3
) ,

𝑡 (𝑥; 𝑟, 3) =
3

4𝑟
× (1 −

𝑥
2

𝑟2
) .

(25)

The discussion so far has implicitly assumed that the
distribution is spread symmetrically around the value 0 in the
observed dimension. This is generally not the case in many
practical scenarios.Themean value of the distribution can be
handled outside of the formula above, where the translation
along the observed dimension can happen after scaling for
radii. When generating Tanazur distributions, the process is

(i) generate distribution for unit spherical model;
(ii) scale distribution for each observed dimension

according to the radius of the model in the said
dimension;

(iii) translate the distribution in each dimension accord-
ing to the value of the mean for the given dimension.

5. Experimentation

The relevance of Tanazur distributions in real world sce-
narios is demonstrated using an experiment. The physical
phenomenon of motion of molecules in an ideal gas is
governed by the kinetic theory of gasses which states that the
kinetic energy of molecules is conserved. The gas molecules
under the conditions of standard temperature and pressure
exhibit motion primarily on the basis of particle collisions,
with minimal effects from other intermolecular forces. These
particle collisions happen in such a way that the kinetic
energy, of the particles involved in the collision, is conserved.
This conservation of kinetic energy can be modeled as a
surface based ellipsoidal model.

Distribution of particle speeds in an ideal gas has been
described by Maxwell-Boltzmann Distribution [32] which is
given as

𝑓 (V) = √
2

𝜋
(
𝑚

𝑘𝑇
)

3

V2𝑒−𝑚V
2
/2𝑘𝑇

. (26)

Numerous experiments [33–36] have involved the mea-
surement of the speed distribution of such particles under
different condition.

Direction observation of gas molecules has not been
possible so far and therefore indirect means of measuring
approximate particle speed have been used. Speed of particles
is calculated based on the motion of tiny dust or pollen

particles suspended in the gas. Our experimentation setup,
however, consists of a computer based simulation of a 2-
dimensional gas. Two-dimensional gas is a known experi-
mental setup [33, 34] for ideal gases and restricts the motion
of gas particles to a single plane, thereby simplifying the
experiment. This simplification does not compromise the
behavior of gas particles. Motion of particles of an ideal gas is
governed by the law of conservation of kinetic energy, which
is given as

𝑛

∑

𝑘=1

𝑚
𝑘
V2
𝑘𝑡

2
=

𝑛

∑

𝑘=1

𝑚
𝑘
V2
𝑘𝑡


2
. (27)

Here V
𝑘𝑡

represents velocity of particle 𝑘 at time 𝑡 and
V
𝑘𝑡
 represents velocity at another time 𝑡.The above equation

can be rewritten in terms of the total kinetic energy 𝐸 of the
system:

𝐸 =

𝑛

∑

𝑘=1

𝑚
𝑘
V2
𝑘

2
. (28)

The subscript “𝑡” has been removed as the gasses in ther-
modynamic equilibrium maintain the total kinetic energy 𝐸
over time. With constant kinetic energy of the system, the
conservation of kinetic energy can be modeled as a surface-
ellipsoidal model. The above equation can be simplified fur-
ther by assuming a homogeneous ideal gas. A homogeneous
gas has the same type of particles and hence the same value
of mass throughout:

𝐸 =
𝑚

2

𝑛

∑

𝑘=1

V2
𝑘
⇒

2𝐸

𝑚
=

𝑛

∑

𝑘=1

V2
𝑘
. (29)

For a 2D gas, the velocity component can be split up into its
component velocities in the 2 dimensions:

2𝐸

𝑚
=

𝑛

∑

𝑘=1

(V2
𝑥𝑘

+ V2
𝑦𝑘
) . (30)

This equation is of the same form as that of the equation of a
spherical model, specified in (2).

Therefore the conservation of kinetic energy in a 2D ideal
gas scenario can be represented by a surface based spherical
model with 2𝑛 dimensions.The radius of the spherical model
is equal to √2𝐸/𝑚 which is also the maximum velocity
attainable by a single particle in such system.

Computer based simulation of 2-dimensional ideal gas
was performed. Kinetic energy of the system of particles was
conserved in the elastic collisions of particles with each other
as well as with the walls of the container. Only 2-way particle
collisions were considered; that is, simultaneous collision of
3 or more particles was avoided to reduce computational
complexity. Different simulation scenarios were performed
which consisted of varying number of gas particles in the
system. As the velocity of each particle is represented by 2
dimensions in the 2D gas, the dimensionality of the spherical
model is twice that of the number of particles in the system.
Figure 9 shows the results of the experiments that were
performed.
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Figure 9: Distributions generated though computer simulations of different particle scenarios: red = 2 particles, green = 3 particles, blue = 4
particles, magenta = 5 particles, and cyan = 100 particles. ((a) to (c)) Distribution of 𝑉

𝑥
, 𝑉
𝑦
, and |𝑉|.

It can be seen from Figure 9 that the velocity components
of a randomly selected particle exhibit Tanazur Distribution.
When the dimensionality of the system is low, that is, few
particles in the system, the distribution curve is similar to the
one seen in lower order Tanazur distribution. As the number
of particles in the gas is increased, the resulting distribution
appears more like the normal distribution. Inflection point of
the distribution curve can be used to find the dimensionality
of the parent ellipsoidal model. What this implies is that, by
observing the distribution of velocity components of a single
particle, the total number of particles in the system can be
calculated.

The above mentioned surface based spherical model was
for a homogeneous gas. A heterogeneous gas on the other
hand is modeled by a surface based elliptical model:

1 =

𝑛

∑

𝑘=1

𝑚
𝑘
V2
𝑘

2𝐸
=

𝑛

∑

𝑘=1

V2
𝑥𝑘

+ V2
𝑦𝑘

2𝐸/𝑚
𝑘

. (31)

The term𝑚
𝑘
represents the mass of particle 𝑘. The above

equation can be written as

1 =

𝑛

∑

𝑘=1

V2
𝑥𝑘

(√2𝐸/𝑚
𝑘
)
2
+

V2
𝑦𝑘

(√2𝐸/𝑚
𝑘
)
2
. (32)

The equation is the same form as that of the equation of
an ellipse, as presented in (1). The radius of the ellipse for a
given dimension is equal to√2𝐸/𝑚

𝑘
; that is, the radius of the

dimension is related to the mass of the particle represented
by the dimension.

As mentioned earlier, this experimental setup uses two
dimensions to represent the 2 velocity components for every
particle. The two velocity components 𝑉

𝑥
and 𝑉

𝑦
, together,

give the velocity 𝑉 of a particle. The speed of the particle is
given as

|𝑉| = √V2
𝑥𝑘

+ V2
𝑦𝑘
. (33)

The distribution of particle speed in gasses as described
by the Maxwell-Boltzmann distribution [32] is shown in

Figure 10. This distribution has the characteristic property of
being skewed, with a long tail at higher velocities. Similar
skewed speed distributions were observed in our 2D ideal
gas simulation and can be seen in Figure 9. This skewed
distribution of particle speed |𝑉| can also be explained on
the basis of Tanazur Distributions.More specifically, we show
that this phenomenon is an outcome of multivariate Tanazur
distributions.

Particle velocity components𝑉
𝑥
and𝑉

𝑦
together make up

the velocity vector of a particle.Themagnitude of this velocity
vector is the speed of the particle and is never negative. If the
velocities components of a particle are uniformly distributed
in the 2D 𝑉

𝑥
𝑉
𝑦
2-ball (circular) model, then the distribution

in 2 dimensions would look similar to Figure 4(a). Each
data point in the model represents an observation on the
combination of velocity components of the particle. The
surface integral for the 2D 𝑉

𝑥
𝑉
𝑦
2-ball model gives the area

of the circle:

Area = ∫

𝑟

0

Ring Circumfrance ∗ 𝑑𝑥,

Area = ∫

𝑟

0

2𝜋𝑥 ∗ 𝑑𝑥 = 2𝜋∫

𝑟

0

𝑥 ∗ 𝑑𝑥.

(34)

As the number of particles in each speed range is equal
to the area of the circular ring defined by that speed range,
the uniform distribution in the 𝑉

𝑥
𝑉
𝑦
circular model gives a

skewed distribution in |𝑉|, withmore data point in the higher
speed ranges as compared to the lower ones.This distribution
is shown in Figure 11 and is equal to the distribution of the
integrand in (35). If the distribution of data points in 𝑉

𝑥
𝑉
𝑦

plane was to change from a uniform distribution to a more
skewed distribution, this skewed data point density in the
circular model will also be reflected on the distribution of
|𝑉|. If the scalar value of data point density in the 2D model
is given by a probability density function 𝑓(𝑥), then the
resultant surface integral over scalar field (𝑓(𝑥)) gives

Area = 2∫

𝑟

0

𝑥 ∗ 𝑓 (𝑥) ∗ 𝑑𝑥. (35)
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Figure 10: (a) Maxwell-Boltzmann distribution for speed of particles in noble gasses at 0 degree C (273.15 K). (blue: Helium, red: Argon,
cyan: Argon, andmagenta: Xenon). (b) Tanazur Distribution (black) compared to distribution for one noble gas (Argon). Argon distributions
are scaled differently for comparison here, with more accurate distribution corresponding to 𝑇(3800, 253, 3) and less accurate distribution
corresponding to 𝑇(3400, 53, 3).

If 𝑓(𝑥) = 𝑡(𝑥; 𝑟, 𝑛, 𝑛

), then the resultant density is

Area = 2∫

𝑟

0

𝑥 ∗ 𝑡 (𝑥; 𝑟, 𝑛, 𝑛

) ∗ 𝑑𝑥. (36)

In other words, we are considering the distribution of data
points in the 2D plane to be a multivariate Tanazur dis-
tribution. For 𝑡(𝑥; [25, 25], 4, 2), the resultant 2D Tanazur
distribution of the 4D spherical model is shown in Figure 11.
We also observe that the distribution of |𝑉| for data point
distribution described by 𝑡(𝑥; [25, 25], 4, 2) looks changed
from the original form. This distribution of a 4D spherical
model corresponds to a system containing 2 particles. If
the number of particles is increased, the corresponding
distributions take the form shown in Figure 12.This is similar
to the distribution of |𝑉| observed in the experiments and
shown in Figure 9.

The results of the 2D gas simulation suggest that the data
points in the ellipsoidal model may be distributed uniformly
at the model level, that is, when observing all dimensions
of the model. What this also suggests is that there is no
bias in the individual velocity components of the particles
(as observed by the symmetric distributions of the velocity
components) or in the combined state of the particles (as
assumed in the uniform distribution on 2 ∗ 𝑛 dimensional
vectors in the model).The skewed distribution of the particle
speed is due to the (skewed) Tanazur distribution from
higher dimensions on the 2D𝑉

𝑥
𝑉
𝑦
plane of the particles. For

3D gas scenarios with 3 degrees of freedom, the calculated
distribution of |𝑉| is

|𝑉| = √V2
𝑥𝑘

+ V2
𝑦𝑘

+ V2
𝑧𝑘
,

Volume = ∫

𝑟

0

4𝜋𝑥
2
∗ 𝑑𝑥 = 4𝜋∫

𝑟

0

𝑥
2
∗ 𝑑𝑥.

(37)

If Tanazur distributions from higher dimensions are
mapped onto this 3D volume, the distribution of |𝑉| can be
calculated as

Volume = 4∫

𝑟

0

𝑥
2
∗ 𝑓 (𝑥) ∗ 𝑑𝑥

= 4∫

𝑟

0

𝑥
2
∗ 𝑡 (𝑥; 𝑟, 𝑛, 𝑛


) ∗ 𝑑𝑥.

(38)

The distributions for |𝑉| can thus be calculated on the
basis of theTanazur distribution, which is projected onto a 3D
sphere. The distribution of—𝑉—generated using Maxwell-
Boltzmann distribution’s equation is compared with that
generated by Tanazur distribution equation and is shown in
Figure 10(b). As the dimensionality of the model is increased,
the |𝑉| Tanazur distributions look very much identical to
Maxwell-Boltzmann’s. In other words, the shape of the |𝑉|

distribution depends on the number of particles in the
experiment. Tanazur distribution therefore predicts that as
the number of particles in the system is decreased, the tail
of the speed distribution |𝑉| (i.e., at higher speed range) will
get smaller.

The above experiment was based on a surface based
ellipsoidal model. An example of a volume based ellipsoidal
model can be that of a system of particles in which the upper
bound of the average particle speed is the speed constant 𝑐:

𝑐 >

𝑛

∑

𝑖=1

V
𝑖

𝑛
. (39)

For a homogeneous gas, this can be written like the
equation of spherical models:

(√𝑐𝑛)
2

>

𝑛

∑

𝑖=1

(√V2
𝑥𝑖
+ V2
𝑦𝑖
+ V2
𝑧𝑖
)

2

. (40)



Abstract and Applied Analysis 15

30

20

10

0

−10

−20

−30

3020100−10−20−30

(a)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 5 10 15 20 25

(b)

30

30

20

20

10

10

0 0

−10

−10

−20

−20

−30

−30

2000

1500

1000

500

0

30

30

20

20

10

10

0 0

−10

−10

−20

−20

−30

−30

2000

1500

1000

500

0

(c)

1

0.8

0.6

0.4

0.2

0
0 5 10 15 20 25

(d)

Figure 11: (a) 𝑇([25, 25], 1) for a 2-ball (1 particle) with the two dimensions corresponding to particles 𝑉
𝑥
and 𝑉

𝑦
. (c) 𝑇([25, 25], 3) for a

4-ball (2 particles) with the observed dimensions corresponding to𝑉
𝑥
and 𝑉

𝑦
of first particle. (b) Speed distribution |𝑉| = √V2

𝑥𝑘
+ V2
𝑦𝑘
for the

Tanazur Distribution shown in top left image. (d) Speed distribution corresponding to the Tanazur Distribution shown in (c).
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Figure 12: Calculated distributions of |𝑉| for multivariate Tanazur distributions corresponding to different model dimensionalities. (a)
Counter-clockwise from the horizontal (at the origin) for a 2D gas scenario, distributions of |𝑉| for 𝑇(25, 2, 2), 𝑇(25, 3, 2), 𝑇(25, 4, 2), and
𝑇(25, 21, 2). (b) Counter-clockwise from the horizontal (at the origin) for a 3D gas (3 velocity components) scenario, distributions of |𝑉| for
𝑇(25, 3, 3), 𝑇(25, 4, 3), 𝑇(25, 5, 3), and 𝑇(25, 22, 3).
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Therefore, the radius of such a system is √𝑐𝑛 and each
dimension of the spherical model represents square root
of the speed component of a particle. If we assume that
the distribution of the model vectors in this 𝑛-dimensional
spherical model is uniform, then Tanazur distribution should
be observed.

The proposed method performs a statistical analysis of
the system and therefore does not give a deterministic solu-
tion. Butwhen compared to deterministicmethods of particle
count determination like the Ideal Gas Law (𝑝𝑉 = 𝑛𝑅𝑇), it
offers an advantage. With sensor errors aside, the Ideal Gas
Law observations can alter the state of the system by changing
the energy state of the system. For example, observing the
pressure of the gas system can alter the temperature and
vice versa. The proposed statistical method does not suffer
from this dilemma as the observed near normal curve merely
shifts along an axis, whilemaintaining its distinct distribution
curve. This is because a change in quantities like pressure or
temperature does not change the underlying variable upon
which the curve shape depends, that is, the particle count of
the gas.

6. Conclusion

By empirical and mathematical methods, we have shown
that uniform distributions in higher dimensional ellipsoidal
models can be observed as “near normal” distributions in
lower dimensions. For an 𝑛-dimensional ellipsoidal model, as
the dimensionality of a system increases, the observed distri-
bution of any variable tends towards the normal distribution.
Conversely, by observing the “near normal” distribution of a
variable, it may be possible to predict the number of variables
in the system.

Many of the phenomena observed in nature can be
modeled as surface or volume based ellipsoidal models. The
experimental section shows one such scenario. The apparent
flexibility of the ellipse equation, with variable dimensional
radii, allows many real world scenarios and processes to be
represented as ellipsoidal models.

There has been a long held belief in the scientific com-
munity about the random nature of the observed variables
in a normal distribution. The findings of this paper offer an
alternate explanation for such observations. It also suggests
that what ultimately appears to be a bias in the states a variable
can take up can in fact be a result of an unbiased (or uniform)
distribution of the variable states in the state space. Perhaps
nature restricts the limits of the sandbox for the play of the
variables but does not intervene in the act of play itself.
The extent to which the model presented here can explain
other real world observations is something which will only be
known in the days to come. But for nowTanazur distributions
give a new perspective on old observations. The choice of the
distribution’s name “Tanazur”, Urdu for perspective, reflects
this.
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