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Abstract. A new technique is proposed for clustering and similarity retrieval of
video motion clips based on spatio-temporal object trajectories. The trajectories
are treated as motion time series and represented either by least squares or
Chebyshev polynomial approximations. Trajectory clustering is then carried
out to discover patterns of similar object motion behaviour. The coefficients of
the basis functions are used as input feature vectors to a Self-Organising Map
which can learn similarities between object trajectories in an unsupervised
manner. Encoding trajectories in this manner leads to efficiency gains over ex-
isting approaches that use point-based flow vectors to represent the whole tra-
jectory as input vector. Experiments on two different motion datasets — vehicle
tracking and pedestrian surveillance - demonstrate the effectiveness of our ap-
proach. Applications to motion data mining in video surveillance databases are
envisaged.

1 Introduction

An increasing number of systems are now able to capture and store data about object
motion such as those of humans and vehicles. This has acted as a spur to the devel-
opment of sophisticated content-based visual data management techniques. General
purpose tools are now urgently required for motion data search and retrieval, discov-
ery and grouping of similar motion patterns, detection of anomalous behaviour, mo-
tion understanding and prediction.

Much of the recent research focus has been on representation schemes for motion
indexing and retrieval [1]-[11]. This work presupposes the existence of some low-
level tracking scheme for reliably extracting object-based motion trajectories. A de-
scription of relevant tracking algorithms is not within the scope of this paper but
recent surveys can be found in [12], [13]. The literature on trajectory-based motion
understanding and pattern discovery is less mature but advances using learning Vec-
tor Quantization (LVQ) [14], Self-Organising Feature Maps (SOMs) [15], [16], hid-
den Markov Models (HMMs) [17], and fuzzy neural networks [18] have been re-
ported. Most of these techniques attempt to learn high-level motion behaviour pat-
terns from sample trajectories using point-based flow vectors as input to the learning
phase. In this paper, we show how to circumvent this requirement by proposing a



trajectory classification approach based on a simple spatio-temporal representation
scheme used for motion indexing and retrieval.

Related work within the temporal database community on approximation schemes
for indexing time series data is highly relevant to the parameterisation of object tra-
jectories. However, computer vision researchers have been slow to adopt this work.
For example, spatiotemporal trajectories have been successfully modelled using dis-
crete Fourier transforms (DFT) [19], wavelet transforms (DWT) [20], adaptive
piecewise constant approximation (APCA) [21], and Chebyshev polynomials [22], to
name but a few.

In this paper, we aim to apply time series indexing of spatiotemporal trajectories to
the problem of trajectory classification and show how to learn motion patterns by
using the indexing scheme as an input feature vector to a neural network learning
algorithm. The remainder of the paper is organized as follow. We review some rele-
vant background material in section 2. In section 3, we present our trajectory model-
ling approach. The algorithm for learning trajectories is then presented in section 4
within the framework of a self-organising map. This is applied in the context of clus-
tering motion trajectories and experimental results for both vehicle and pedestrian
object tracking databases are reported in section 5. The paper concludes with a dis-
cussion of the advantages of our proposed technique over competing approaches and
outlines further work.

2 Review of Previous Work

Motion trajectory descriptors are known to be useful candidates for video indexing
and retrieval schemes. Previous work has sought to represent moving object trajecto-
ries through piecewise linear or quadratic interpolation functions [1], [2], motion
histograms [4] or discretised direction-based schemes [3], [8], [9]. Flexible spatio-
temporal representations using piecewise polynomials were proposed by Hsu [6],
although consistency in applying trajectory-splitting across query and searched trajec-
tories can be problematic. Affine and more general spatiotemporal invariant schemes
for trajectory retrieval have also been presented [5], [7], [10]. The importance of
selecting the most appropriate trajectory model and similarity search metric has re-
ceived relatively scant attention [11].

In addition to polynomial models, a wide variety of basis functions have been used
to approximate object trajectories [19]-[22]. Efficient indexing schemes can then be
constructed in the coefficient space of the basis functions. These have been compared
with respect to search pruning power, CPU and 1/O efficiency costs [21], [22].

It is surprising to find that many of these candidate spatiotemporal trajectory in-
dexing schemes have not yet been applied to the problem of motion data mining and
trajectory classification. Recent work has either used probabilistic models such as
HMMs [17] or point-based trajectory flow vectors [14], [16], [18] as a means of
learning patterns of motion activity. Flow vectors consist of spatial coordinates aug-
mented by instantaneous object velocities and optionally accelerations. These can be
normalised to account for variation in trajectory lengths.



The contribution of this paper is to show that a trajectory-encoding scheme based
on input feature vectors consisting of basis function approximation coefficients can
be used to learn motion patterns. Hence, clustering and classification processes can be
carried out effectively in the coefficient space.

3 Trajectory Representation

The output of a motion tracking algorithm is usually a set of (noisy) 2-D points (X;, Vi)
representing the object’s motion path over a sequence of n frames, where i = 1,...,n.
In this case, the representative point is taken to be the centroid of the object’s mini-
mum bounding rectangle. The motion trajectory can be considered as two separate 1-
dimensional time series, <t;, ;> and <t;, y;>, the horizontal and vertical displacement
against time where t; < ... < t,. We consider two alternative trajectory models, Least
Squares (LS) and Chebyshev polynomial approximations. LS polynomials are suit-
able for modelling simple motion trails, e.g. vehicles moving smoothly along high-
ways, whilst Chebyshev approximations are more appropriate for modelling complex
spatiotemporal trajectories such as pedestrian tracking exhibiting stop-start and loop-
ing motions.

3.1 Least Squares Polynomials
The trajectory can be approximated by a polynomial P,(t) of degree m <n as
[X|yl= Py(t) =ag +aqt +...+apnt"™ @)

The x, y displacements are modelled as independent polynomials P, P’ in t. Note
that separate 1-D trajectories are created for each spatial coordinate [x | y]. The un-
known 2(m+1) coefficients {ay, a,}, i = 0,...,m can be determined using LS by mini-
mising the function E with respect to ay, ay, ...
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The motion trajectories are thus indexed by vector of coefficients {(a,...,axm).(
ayo,...,aym) }-

3.2 Chebhyshev Polynomials
Alternatively, a spatiotemporal trajectory can be approximated by a function f(t) ex-

pressed as a weighted sum of Chebyshev polynomials Cy(t) up to degree m, defined
as
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where Cy (t) =cos(k cos‘l(t)) and
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fort e [-1,1] and i = 1,..., m. The k roots of Cy (t) are given by t; for 1 < j <k. Imple-
mentation details can be found in [23].

Occasionally it is necessary to approximate the motion trail (spatial trajectory
shape) in the xy plane. In this case, we replace t by x or y in one of the above equa-
tions depending on the choice of principal axis [6]. This would only be worthwhile if
all trajectories can be aligned with the same principal axis.

3.3 Similarity Search Metric

A Euclidean distance is used as the basis for comparing the similarity of motion
trajectories. Each polynomial produces a vector of coefficients which can be used to
index a 2-dimensional spatiotemporal trajectory. Given two trajectories Q and S, we

can index these by a vector of 2(m+1) coefficients Q:{q_o’ﬂ} and

S = {50,....,sm } where q;, s; are g; :[qxi,qyi]T and sqi:[sxi,syi]T (i=0,.., m).
A Euclidean distance function (ED) on the coefficient space can be expressed as
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4  Learning Trajectory Patterns Using Self-Organizing Maps

Self-organised maps (SOMs) have been previously used for motion trajectory classi-
fication [15], [16] with trajectories encoded as flow vectors. This step can be replaced
by the proposed coefficient indexing scheme. A SOM discovers the underlying struc-
ture of motion trajectory data through unsupervised learning.

4.1 Network Model

The architecture chosen for the SOM is very simple with a layer of input neurons
connected directly to a single 1-dimensional output layer. Each input neuron is con-



nected to every output neuron with the connection represented by a weight vector. A
similar architecture was used in [16] for learning vehicle trajectories as a means for
accident prediction.

In a SOM network, physically adjacent output nodes encode the patterns in the tra-
jectory data that are similar and, hence, it is known as a topology-preserving map.
Consequently, similar object trajectories are mapped to the same output neuron. The
number of input neurons is determined by the size of the feature vector which in this
case relates to the selected number of coefficients for the basis functions. The degree
of the polynomial can be chosen by setting a threshold on the maximum deviation of
the approximation from the data or mean-squared error. The number of output neu-
rons represents the number of groups in the trajectory data and this is selected manu-
ally.

4.2 Learning Algorithm

The algorithm used to cluster the trajectories differs slightly from the original SOM
proposed by Kohonen [24]. The number of output neurons is initially set to a higher
value than the desired number of clusters which we wish to produce. After training
the network, clusters representing the most similar patterns are merged until the clus-
ter count is reduced to the required number. The weights are initialised to linearly
spaced values lying within the range of input values. Neighbourhood size is initially
set to cover over half the diameter of the output neurons.

Let B be the input feature vector representing the set of trajectory basis function
coefficients, and W the weight vector associated to each output neuron. The learning
algorithm comprises the following steps:

1. Determine the winning output node k (indexed by c) such that the Euclidean dis-
tance between the current input vector B and the weight vector W, is a minimum
amongst all output neurons, given by the condition

[B-W.®) <] B-W,@®] vk (6)

2. Train the network by updating the weights. A subset of the weights constituting a
neighbourhood centred around node ¢ are updated using

Wy (t+1) =W, (t) + a(t)n(k, c)(B —W, (1)) )

where 7(k, ¢) = exp(—|rr.* / 26%) is a neighbourhood function that has value 1
when k=c and falls off with distance |r—r| between nodes k and c in the output
layer, o is a width parameter that is gradually decreased over time and t is the
training cycle index.

3. Decrease the learning rate «(t) linearly over time.

4. After a pre-determined number of training cycles, decrease the neighbourhood
size.



5. At the end of the training phase, merge the most similar cluster pairs until the de-
sired number of groupings is achieved. Clusters are merged by calculating the
weighted mean of the weights associated with each neuron taking into account the
number of input samples allocated to the cluster. Assuming W, and W, are the
weight vectors associated with output neurons representing the most similar clus-
ters, and m, n are the number of sample trajectories mapped to these neurons re-
spectively, a new weight value W, for the merged cluster can be calculated as

mW, +nW, 8)

W =
a m+n

5 Experiments

We now present some results to indicate the effectiveness of the proposed trajec-
tory clustering technique. The algorithm was first tested on a highway traffic surveil-
lance sequence. The video sequence was recorded with a stationary camera having a
resolution of 176 x 144 pixels and a video capture rate of 15 frames/second. The
individual trajectories of 284 vehicles were extracted using the PTMS tracking algo-
rithm [25] illustrated in Fig. 1(a). This dataset was chosen due to its simple underly-
ing structure and the fact that cluster visualisation could be easily interpreted in terms
of vehicle lane classification.

Given the uniformity of the vehicles’ trajectory shape, it was decided to fit a least
squares polynomial of degree 3, in the form x = P(y) to the motion trail. The coeffi-
cient vectors {ajo,ai1,ai2,8i3} for each sample trajectory i were input to the SOM train-
ing network. Initially, the trajectories were grouped into 10 clusters (output neurons).
Similar clusters were then merged in a hierarchical fashion until just 4 clusters re-
mained. The results can be seen in Fig. 1(b)-(e). Notice that a number of trajectories
represent vehicle lane changes and these are usually the most distant from the cluster
centre. By setting a threshold on the distance between the final adjusted weight vector
and each sample trajectory, anomalous trajectories can be detected as shown in Fig.
1(). It should be noted that some anomalies result from tracking errors and vehicle
occlusions.

Given that labelled ground truth was available, the effect on classification accuracy
of partitioning the trajectory samples into training and test data was investigated. The
training set was obtained by selecting samples at random from each labelled group.
The classification errors are shown in Table 1 for different sized training/test data.
The SOM achieves 100% classification accuracy for modest sized training sets dem-
onstrating the robustness of using polynomial coefficients as inputs to the learning
algorithm.

In the second example, we evaluate the performance of the trajectory clustering al-
gorithm using the CAVIAR visual tracking database [26]. The database consisted of
hand annotated video sequences of moving and stationary people and are intended to
provide a testbed for benchmarking vision understanding algorithms. Semantic de-



scriptions of the target object behaviours and motion have been generated and stored
in XML files. These have been parsed these to extract ground truth-labelled object
trajectories. The dataset contains 102 trajectories as shown in Fig. 2.

Fig. 1. Clustering of vehicle trajectories using SOM network. (a) Motion trajectories extracted
using vehicle tracking. (b)-(e) Trajectories clustered into groups based on lane membership. (f)
Anomalous trajectories obtained by setting threshold on distance from final weight vector.

Since this database contains more complex trajectories, these are modelled spatio-
temporally using Chebyshev approximations. Temporal shift and scale invariance has
been used to normalise the time series datasets[6]. Polynomials of degree 8 and
above provide adequate model fidelity to the data generating input feature vectors
with 18 coefficients (9 for each spatial coordinate). Orthogonality properties ensure



that high order approximations (m > 4) do not yield oscillatory polynomials. We
initially train a SOM network with 25 output neurons and then reduce these to 12
using the agglomerative clustering method described in section 4.2. The resulting
trajectory groups are shown in Fig 3. Qualitatively similar motion trajectory patterns
appear to have been grouped together quite successfully.

Table 1. Vehicle trajectory classification errors for SOM training based on highway lane
membership. Sample trajectories have been partitioned into different sizes of training and test
datasets.

Size of training set  Size of test set  Correct classification (%)

5 259 86.7
8 256 87.1
10 254 94.4
15 onwards 249 100.0

Fig. 2. Background scene containing database of ground truth labelled object trajectories.

6 Discussion and Conclusion

This paper presents a neural network learning algorithm for classifying spatiotem-
poral trajectories. Global features of motion trajectories are represented well by poly-
nomial approximations and this is apparent in the cluster visualizations. Using coeffi-
cients of basis functions as input feature vectors to a neural network learning algo-
rithm offers an efficient alternative to the use of flow vectors for trajectory classifica-
tion.

A current disadvantage is the handling of partial trajectory matching which is un-
suited to a polynomial-based representation. One possibility is to parameterise the
trajectory length and augment the feature vector with additional entries. In future
work we would like to extend this approach to the autonomous detection of anoma-
lous trajectories and prediction of unusual motion behaviour.
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Fig. 3. Clustering of spatiotemporal object trajectories from CAVIAR database into 12 distinct
groups using SOM network.
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