
1

Flexible Implementation of Multi-standard demapper Using LabVIEW

Flexible Implementation of Multi-standard Demapper

Using LabVIEW

BY

MUHAMMAD WAQAS

01-244142-048

SUPERVISED BY

DR. ATIF RAZA JAFRI

Session-2014

A Report submitted to the Department of Electrical Engineering

Bahria University, Islamabad

 in partial fulfilment of the requirement for the degree of MS (EE)

2

Flexible Implementation of Multi-standard demapper Using LabVIEW

CERTIFICATE

We accept the work contained in this report as a confirmation to the required standard for the

partial fulfilment of the degree of MS (EE).

__________________ __________________

Head of Department Supervisor

__________________ __________________

Internal Examiner External Examiner

3

Flexible Implementation of Multi-standard demapper Using LabVIEW

DEDICATION

I dedicate my thesis to my family and my teacher without whom it would have been impossible.

4

Flexible Implementation of Multi-standard demapper Using LabVIEW

DECLARATION OF AUTHORSHIP

I hereby declare that content of this thesis is my own work and that it is the result of work done

during the period of registration. To the best of my knowledge, it contains no material previously

published or written by another person nor material which to a substantial extent has been accepted

for the award of any other degree or diploma of the university or other institute of higher learning,

except where due acknowledgement has been made in the text.

5

Flexible Implementation of Multi-standard demapper Using LabVIEW

ACKNOWLEDGEMENTS

I acknowledge, my heartfelt gratitude, debts of thanks to my advisor Dr. Atif Raza Jafri for the

continuous assistance, support, patience, motivation, and immense knowledge. His inputs in my

research are invaluable. The door to his office was always open whenever I ran into trouble or had

a question. I could not have imagined having a better advisor and mentor for my research. It was

a pleasure working with him.

Beside advisor I am grateful to National Instruments Pakistan specially Ahmed khalid and Adnan

for assisting me in using National Instruments Hardware and tools for Rapid Prototyping

6

Flexible Implementation of Multi-standard demapper Using LabVIEW

ABSTRACT

Wireless communication standards are evolving rapidly and hence new waveforms are introduced

to achieve better spectral efficiency. In a wireless communication system constellation mapping

on transmitter side and soft demapper on receiver side are major building block of transmission

chain. To construct these different waveforms various standards, support different waveforms

constellation mapping ranges from BPSK to 256-QAM are used in different standards. The other

related parameters could be use of rotated constellation. In order to comply with multi standards,

the demapper should be capable of handling all constraint imposed by the transmitter. This thesis

is aimed at hardware implementation of reduced complexity future DVB demapper capable of

supporting QPSK to 256-QAM with rotated style in a non-iterative demodulation context.

Parameterized hardware implementation is carried out to access the trade-offs between earlier used

algorithms and techniques in terms of rapid prototyping in addition to flexibility, throughput and

area consumed. The implementation is carried out on NI USRP RIO Kintex 7 device. For rapid

prototyping LabVIEW tool kit and associated design flow has been adopted. Synthesis results of

our design show that our architecture achieves better throughput over area ratio while comparing

with other implementations for most recent DVB-T2 standard.

7

Flexible Implementation of Multi-standard demapper Using LabVIEW

TABLE OF CONTENTS

Certificate .. 2

Dedication ... 3

Declaration of Authorship... 4

Acknowledgements ... 5

Abstract ... 6

CHAPTER 1. Introduction.. 14

1.1. Motivation .. 15

1.1.1. Quadrature Amplitude Modulation (QAM) .. 15

1.1.2. Correlated I & Q ... 17

1.1.3. Constellation Rotation and Cyclic Q Delayed .. 17

1.1.4. ML Demapping ... 18

1.1.5. Demapping for Gray Coded Constellation ... 19

1.2. Functional Flow of SDR .. 20

1.3. Problem Description .. 22

1.4. Thesis Objective... 22

1.5. Thesis Organization ... 23

8

Flexible Implementation of Multi-standard demapper Using LabVIEW

CHAPTER 2. Literature Review .. 25

2.1. Available State of Art Demappers ... 25

2.1.1. Altera Wimax Demapper Model [7] ... 25

2.1.2. Rapid Design of Universal Soft Demapper [4] ... 26

2.1.3. NISC Model for SISO Demapper [5] ... 28

2.1.4. Design of rotated DVB-T2 QAM Mapper/ Demapper [8] ... 29

2.1.5. Low Complexity Soft-Decision Demapper for high order modulation of DVB-S2

System [9] ... 29

2.1.6. ASIP Based Universal demapper for Multi-Wireless Standards [3] 30

2.2. A Low-Complexity 2D Signal Space Diversity Solution for Future Broadcasting Systems

[2] .. 30

CHAPTER 3. Methodology .. 33

3.1. C Modelling of Proposed Demapper ... 33

3.1.1. Results and Analysis of C Modelling ... 37

3.2. LabVIEW Modelling ... 40

3.3. LabVIEW FPGA Development ... 40

3.4. LabVIEW FPGA IP Builder Development.. 40

CHAPTER 4. Implementation & Results ... 42

4.1.1. LabVIEW FPGA Basics ... 42

9

Flexible Implementation of Multi-standard demapper Using LabVIEW

4.1. Experimental Setup .. 45

4.2. Proposed Demapping with LabVIEW FPGA .. 46

4.2.1. Transformation .. 46

4.2.2. Region Computation ... 49

4.2.3. Block RAMs for Symbol Number, Sorted I and Sorted Q ... 61

4.2.4. Euclidean Distance and LLR Computation .. 63

4.2.5. Results ... 65

4.3. Proposed Demapping with LabVIEW FPGA IP Builder with Vivado HLS 67

4.3.1. Benefits of Using LabVIEW FPGA ... 72

4.3.2. Results ... 73

4.4. LabVIEW, LabVIEW FPGA development and LabVIEW FPGA IP Builder Comparison

... 76

4.5. Comparison state of the art of some Demappers ... 77

CHAPTER 5. Conclusion ... 80

References ... 82

Appendix ... 84

10

Flexible Implementation of Multi-standard demapper Using LabVIEW

LIST OF FIGURES

Figure 1-1 System Diagram ... 15

Figure 1-2 Grey Coded 16 QAM .. 16

Figure 1-3 Rotated 16-QAM ... 18

Figure 1-4 ML demapping [3] .. 19

Figure 1-5 demapping for Gray Coded [3] ... 20

Figure 1-6 Cyclic Q Delayed .. 22

Figure 2-1 .. 26

Figure 2-2 ASIP Architecture ... 27

Figure 2-3 NISC Architecture ... 28

Figure 4-1 LV FPGA Working [12] .. 42

Figure 4-2 Enable Chain [12] ... 43

Figure 4-3 SCTL [12] ... 44

Figure 4-4 Proposed Demapper Hierarchy ... 45

Figure 4-5 Experimental Setup ... 46

Figure 4-6 Transformation (a) .. 48

Figure 4-7 Transformation (b) .. 48

Figure 4-8 Region ... 49

11

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 4-9 QPSK Normalized ... 50

Figure 4-10 QPSK Rotated ... 50

Figure 4-11 QPSK Rotated & Transformed ... 51

Figure 4-12 16QAM Normalized.. 52

Figure 4-13 16QAM Rotated .. 53

Figure 4-14 16QAM Rotated and Transformed .. 54

Figure 4-15 64QAM ... 55

Figure 4-16 64QAM Rotated .. 56

Figure 4-17 64 QAM Rotated and Transformed ... 57

Figure 4-18 .. 59

Figure 4-19 256 QAM Rotated ... 59

Figure 4-20 256 Rotated & Transformed .. 60

Figure 4-21 Memory Address Gen & Distance Computation .. 62

Figure 4-22 LV FPGA LLR Computation with Min Finder .. 64

Figure 4-23 LV FPGA Resources ... 66

Figure 4-24 Directives Setting Process [13] ... 68

Figure 4-25 IP Transformation and Region .. 70

Figure 4-26 IP Distance Computation .. 71

Figure 4-27 IP Minimum Finder ... 72

12

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 4-28 Low Complex Proposed Architecture ... 75

13

Flexible Implementation of Multi-standard demapper Using LabVIEW

Introduction

14

Flexible Implementation of Multi-standard demapper Using LabVIEW

CHAPTER 1. INTRODUCTION

Wireless communication standards are increasing swiftly from decades. Due to rapid increase in

standards compatibility issues rise in wireless standards. Some common wireless standards are

GSM, LTE, HSPA, DVB-T. DVB-T2 etc.

Increase in wireless communication technology give exponential rise to the rapid, flexible

implementation of Software defined radio blocks that include turbo encoder for forward error

correction techniques (FEC), BICM Interleaver and Mapper on transmitter side. While on receiver

side same blocks are used in reverse manner like demapper, deinterleaver and decoder.

The main aim in SDR is to ensure flexibility to overcome compatibility issues that arise in various

standards. In early stages due to non-flexible hardware when technology changes it affects both

cost, development effort and time. So from last decades as number of users and communication

applications increase it gives rise to flexible and rapid development of radio platform which

configure the hardware with respect to the input parameters.

15

Flexible Implementation of Multi-standard demapper Using LabVIEW

1.1. Motivation

Demapper is necessary part in any digital communication system, which is assigned to generate

LLRs. Demapping depends on mapping techniques used on transmitter side. Different standards

support different modulation types mentioned in table 1-2.

Figure 1-1 System Diagram

 Modulation is the process in digital communication in which digital data is mapped to the

set of signal waveforms. In thesis we concentrate on QPSK to 256 QAM modulation type.

Common modulation type used in different standard is explained below.

1.1.1. Quadrature Amplitude Modulation (QAM)

In Quadrature Amplitude Modulation two signals 90 degrees apart are used and their amplitude is

varied with respect to sequence of incoming data. Symbol modulated by QAM are represented by

formula in equation a.

𝑆(𝑡) = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 − 𝐴𝑠 sin 2𝜋𝑓𝑠𝑡 (a)

Signals mapped with gray coded constellation is given in figure 1-2.

16

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 1-2 Grey Coded 16 QAM

In any QAM modulation type each constellation point of M-Ary type can represent

log2(𝑀) = 𝐶 𝑏𝑖𝑡𝑠. For Simple 16 QAM the constellation used is given with I and Q axis {-3, -1,

+1, +3}. Bits mapping in 16 QAM Gray Coded is given in table 1-1.

V0V1 I V2V3 Q

00 -1 00 1-1

01 -3 01 -3

11 +3 11 +3

10 +1 10 +1

Table 1-1

17

Flexible Implementation of Multi-standard demapper Using LabVIEW

1.1.2. Correlated I & Q

In Gray Mapping the QAM constellation is divided is divided in to PAM (Pulse Amplitude

Modulation) on every component at I and Q axis. As shown in figure 2 and table 1 that V0 and V1

are used to map I axis while for Q axis V2 and V3 are mapped. So I & Q cannot be uniquely

separated.

To compensate this independency correlation between I & Q is required on all constellation points.

So due to above every point of constellation will be uniquely identified from both axis.

1.1.3. Constellation Rotation and Cyclic Q Delayed

In DVB-T2 when constellation rotated the normalized values of mapped symbols are rotated in

both complex plane and imaginary part is cyclic Q delayed by one cell to uncorrelate the I & Q.

The rotation angles proposed in DVB-T2 standard [1] are given in table 1-2.

Modulation QPSK 16-QAM 64-QAM 256-QAM

Degrees 29,0 16,8 8,6 Atan(1/16)

Table 1-2

These proposed rotation angles in DVB-T2 increase demapper hardware complexity. However

rotation angles proposed in [2] reduce the complexity and no of distance computations. Where

constellation rotated by angle proposed in [2] for 16QAM is shown in figure1-3.

18

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 1-3 Rotated 16-QAM

1.1.4. ML Demapping

One of existing demapping technique is Maximum Likelihood (ML) demapping used in [3]. This

technique compute distances from all the points in M-Ary constellation. Over all constellation is

divided in to small subsets with respect to bit location and bit value. ML demapping require 2𝑚

computations [3] for one Log Likelihood Ratio(LLR) where ‘m’ is no of bits per symbol. After

2𝑚 computations the minimum finder computes the minimum distance among each subset to

generate LLR. The overall ML demapping 2𝑚 distance computations are shown in figure 1-4.

19

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 1-4 ML demapping [3]

1.1.5. Demapping for Gray Coded Constellation

Gray Coded constellation mapping style is explained in figure 1-5 and table 1. At demapper gray

coded constellation requires 2
𝑚

2 -1 computations to generate one LLR [3-5]. In this the whole

constellation splits around I&Q axis as shown in table 1 and figure 3. The constellation distances

will be computed among both I and Q i.e half for I and half for Q.

20

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 1-5 demapping for Gray Coded [3]

1.2. Functional Flow of SDR

The functional flow of overall system is shown in Fig.1 started from Source provide source bits

to the FEC for turbo encoding which adds redundant bits in a manner that ensure data reliability

on receiver in turbo encoding two encoders are placed one get bits in original sequence while

second encoder gets same bits in known interleaved sequence the code rate of turbo encoder is

given by
𝑘

𝑛
 where for ‘k’ source bits the encoder generates ‘n’ encoded bits the output of encoder

may contain both ‘parity’ and ‘source’ bits at output.

If the channel is fading channel and fades are deep and encoded bits of source are in sequence the

fades may destroy the whole symbol to handle with fading the BICM interleaver introduced to

shuffle the encoded bits in known order so that each symbol not contain all the encoded bits of

same source bit. Due to this if the symbol is affected by fading then it will be recovered at

deinterleaver on receiver.

21

Flexible Implementation of Multi-standard demapper Using LabVIEW

Channel condition and mapper define at what symbol rate transmission can be done. At last mapper

is used to map the interleaved bits. There are different constellation schemes from BPSK to 256

QAM i.e simplest to complex. Each has its symbol rate upto 8 Bits/ Symb. Different wireless

standard uses different schemes from BPSK to 256 QAM in non-rotated and rotated both styles.

Normally symbols are mapped by gray coded constellation, for different standard modulation types

supported are shown in table1-3.

Standard Modulation Type

802.11n BPSK, QPSK, 16-QAM and 64-QAM

802.16e QPSK, 16-QAM, 64-QAM

3GPP-LTE QPSK, 16-QAM, 64-QAM

DVB-SH QPSK, 8PSK and 16APSK

DVB-S2 QPSK, 8PSK, 16APSK and 32APSK

DVB-T2 QPSK, 16-QAM, 64-QAM and 256-QAM

Table 1-3

At receiver side Demapper demaps the received and distorted symbol by computing

Euclidean distances there are different techniques used to demap the symbol each have its own

complexity level.

The demapped symbol’s LLR then passed to deinterleaver to gather the bits in original sequence.

In last turbo decoder decodes the bits using LLR in iterative process and generates source bits. In

existing algorithms when point received on receiver its distance is computed among all points for

both and I and Q then global minima defines the LLR to be either 0 or 1

This thesis mainly aims at flexible implementation of low complex DVB-T2 demapper at

certain angles which includes QPSK to 256 QAM constellation in rotated manner. It achieves

22

Flexible Implementation of Multi-standard demapper Using LabVIEW

improved performance compared to DVB-T due to using Rotated Cyclic Q Delayed (RCQD). Idea

of RCQD is to uncorrelate the real and imaginary parts of the constellation points and it delays the

imaginary point that is Q by one cell as shown in figure 1-6 [6].

Figure 1-6 Cyclic Q Delayed

1.3. Problem Description

There are several demappers and demapping techniques are proposed for receiver which

have their own architecture and algorithm complexity which is related to the constellation mapping

used at transmitter end.

 However, in DVB-T2 when the rotated flexibility is added to the constellation it gives rise

to the hardware complexity and exhaustive search specially in case of higher constellation i.e 256-

QAM.

 This thesis aims to study already proposed architectures, demapping algorithms and

suggest a flexible low complex and high throughput demapper architecture.

1.4. Thesis Objective

Objective of the thesis is:

23

Flexible Implementation of Multi-standard demapper Using LabVIEW

 Software Modelling and analysis of low complex demapper.

 Rapid prototyping of low complex demapper

 Hardware implementation of low complex future wireless broadcast demapper in multiple

domains to analyse with respect to throughput and resources using different

implementation approaches and different directives

1.5. Thesis Organization

The thesis comprises on study of digital communication with SDR environment and

study of demapper complexity, algorithms and architecture. Different algorithms and architecture

explained in Chapter 2 for demapper. In our case we took demapper of DVB-T2 which uses

rotated constellation whose complexity prevents it use in wider application. The Thesis

implementation is done with experimental setup on NI-USRP RIO (Kintex 7) using LabVIEW

FPGA. This organized in following manner:

1. Chapter 2 (Literature review)

2. Chapter 3 (Methodology)

3. Chapter 4 (Implementation and Results)

4. Chapter 5 (Conclusion)

5. References

24

Flexible Implementation of Multi-standard demapper Using LabVIEW

Literature Review

25

Flexible Implementation of Multi-standard demapper Using LabVIEW

CHAPTER 2. LITERATURE REVIEW

Wireless communication in SDR context require different data rates to be supported. So with

respect to the channel conditions different data rates used like 2 bits/ Sym to 8 Bits/ Sym. These

symbol mapping done at transmitter end. While at receiver end demapping of these mapped

symbols are required. In SDR to make flexible demapper different architectures and algorithms

are proposed such that ML Demapping, Gray Coded Constellation, Demapping for rotated

constellations, ASIP Demapper, NISC Demapper, etc. However, in DVB-T2 when constellations

are rotated with described angles in table 1-2 and cyclic Q delayed it increases the hardware

complexity due to exhaustive search specially in case of higher order constellation.

2.1. Available State of Art Demappers

Different demappers proposed in literature have different architectures and complexity. Some of

these demappers are explained below.

2.1.1. Altera Wimax Demapper Model [7]

Altera builds all the reference designs that accelerate the development of an IEEE 802.16e-2005

model. The demapper proposed by Altera support hardware configurable demapper at run time

from QPSK to 64-QAM modulation schemes. All symbols normalized to divide equal average

power to each symbol. In mapping constellation points are multiplied with scaling factor.

 For efficient hardware the constellation demapper is fully time division multiplexed. In 16-

QAM modulation case it acquires data at every six clock cycles. As Altera demapper support

maximum 64-QAM so its bus is not fully utilized in QPSK and 64-QAM case.

26

Flexible Implementation of Multi-standard demapper Using LabVIEW

 In Altera demapper IQ data is converted from parallel to serial the passed to decision

calculator which determine the decision metrics used for bit polarity and again data is converted

to parallel for quantization interval the block diagram of Altera Demapper is shown in figure 7.

Figure 2-1

The synthesis results for Altera designed demapper are shown in table 4.

Table 2-1

 Whereas our design explained in chapter 3 take input at every clock cycles that gives high

throughput.

2.1.2. Rapid Design of Universal Soft Demapper [4]

Conducted the research on rapid design and prototyping of universal soft demapper. Their research

provided steps in development of rapid design, validation and prototyping with the purpose of

creation of multi standard ASIP based universal soft demapper. They presented the results in which

ASIP provided flexibility to support large numbers of modulation types with the usage of up to 8

bits per symbol in context of turbo and non-turbo as shown in figure below.

27

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 2-2 ASIP Architecture

For rapid design development ASIP modelling was done in LISA ADL till FPGA implementation.

Logic emulation board with the integration of Virtex 5 LX330 FPGA prototype reached at a

throughput of 102 Mega LLR/Sec for Grey mapped 16-QAM constellation at a clock frequency of

156 MHZ with 9 pipeline stages. 1596 slice registers, 2627 slice LUTs and 6 DSP48Es were used

in the reduced size of ASIP with the purpose of increased and higher throughputs.

Our work model the demapper in C language and implemented in LabVIEW FPGA and

LabVIEW FPGA IP Builder contributes in designing a parameterized hardware approach and

implementing a new low complex demapper for DVB-T2 which consumes less resources and

achieve throughput of 836.82MLLR/Sec in QPSK.

28

Flexible Implementation of Multi-standard demapper Using LabVIEW

2.1.3. NISC Model for SISO Demapper [5]

 Carried out research in the field of wireless digital communication to deal with the problem of

increased level of complexity and diversity. The major purpose of researchers in this field is to

reduce complexity and increase the performance of the system without any disturbances and errors.

Flexibility along with increased performance is the major concern but it requires design approach

that can provide the better controlling and managing hardware resources. ASIP design approach

provides flexible design with imposed dynamic scheduling of a set of instructions relevant to

decoding. NISC design approach is helpful in reduction of this kind of instructions overhead and

ultimately improves the performance. This research explored NISC approach in the case of

universal demapper for various wireless standards. Different state-of-the-art ASIP were used in

the main architecture for comparison purposes. These results indicated that proposed design

showed significant improvement in execution time and implementation area while using same

flexibility parameters. The proposed demapper design supports iterative demodulation and

produces LLRs in different modulation schemes initiated from BPSK up to 256 QAM with and

without SSD using any mapping design as shown in below figure.

Figure 2-3 NISC Architecture

Our work contributes by following the parameterized hardware approach which also reduce

the instruction overhead that results in reducing initiation interval and give rise to throughput of

29

Flexible Implementation of Multi-standard demapper Using LabVIEW

the demapper. Two approaches implemented one using LabVIEW FPGA and LabVIEW FPGA IP

Builder best results reflected by IP Builder because it gives much controls over designing

techniques like pipelining, loop unroll, initiation interval memories implementation and Clock

Rate.

2.1.4. Design of rotated DVB-T2 QAM Mapper/ Demapper [8]

[8] Worked on signal space diversity (SSD) in association with rotated QAM mapper and

demapper for DVB-T2 standards. They proposed the design with the purpose of efficient SSD and

improved performance of QAM constellation over fading channels. They examined the

decomposition of constellation into two-dimensional sub-regions in signal space. These were also

associated with the algorithmic simplification led to novelty of this work. It was observed that

overall complexity of the demapper reduced significantly as their algorithm requires 25

computations for 64-QAM as whole constellation is divided such that each region has 25 points

so instead of computing distance among 64 points it uses only 25. This research also provided the

description of design and FPGA prototyping of resultant proposed architecture. These least

complex design and improved performance showed the efficiency of detection method.

2.1.5. Low Complexity Soft-Decision Demapper for high order modulation

of DVB-S2 System [9]

Worked on implementation of soft-decision demapper for high order modulation to reduce the

complexity. They tested the proposed model which could operate at a symbol rate. By replacing

the parallel to serial converter between M-PSK demodulator and the soft-decision demapper. It

was observed that soft-decision demapper reduced the complexity of the hardware due to reuse of

multipliers. These proposed modifications were supportive for high-order modulation modes and

verified using of FPGA board having Xilinx Virtex II. Further they also tested that this proposed

design can be adopted in different cables and wireless communication systems.

30

Flexible Implementation of Multi-standard demapper Using LabVIEW

2.1.6. ASIP Based Universal demapper for Multi-Wireless Standards [3]

Designed a universal ASIP-based flexible demapper. In this concern their design showed full

flexibility in a range of low complexity QPSK grey mapped constellation to high complexity 256-

QAM support with turbo demodulation framework. This proposed architecture was also flexible

in usage of demapper both in iterative and non-iterative receivers. All these results and design

showed the throughput of 606 mega LLR per second for 16-QAM grey-mapped constellations.

2.2. A Low-Complexity 2D Signal Space Diversity Solution for

Future Broadcasting Systems [2]

Examined the performance of current demappers and different standards used in industry for

improving performance of over fading channels. For this purpose, they tested RCQD in DVB-T2

modulation and assessed its substantial gains in severe channel conditions. In this concern they

suggested different rotation angles for various QAM constellations leading to low-complexity

detection method. Different comparison of the rotation angles with the current standards produced

the efficient results. They concluded that proposed solution reduced the complexity of the current

system and it also simplified the transmitter and receiver leading to efficient performance in

comparison of current proposed angles in DVB-T2. All of these results indicated that overall 60%

complexity was reduced.

 In our demapper we use this approach to verify, model, design and implement low

complex and high throughput demapper. The demapper proposed in [6, 7, 9-11] do not use RCQD

however this algorithm uses RCQD and reduce the complexity by order O(2√M). This proposed

algorithm is used to design a low complex demapper with rapid prototype development tool and

technique. The overall hardware resource usage of algorithm is given in below table with very

good results although MMSE gives much lower computation complexity but on other side it has

worst performance results in simulations as shown in table below.

31

Flexible Implementation of Multi-standard demapper Using LabVIEW

Table 2-2

32

Flexible Implementation of Multi-standard demapper Using LabVIEW

Methodology

33

Flexible Implementation of Multi-standard demapper Using LabVIEW

CHAPTER 3. METHODOLOGY

The work started after studying different wireless standards and SDR blocks. All standards

have their own complexity and architecture. Demappers were studied in detail with respect to

algorithm and architecture complexity, as DVB-T2 uses rotated constellation whose complexity

increase when used with SSD which prevent its use in large applications.

First of all, authentic literature is gathered which also include study of DVB-T2 standard,

Altera Mapper/ Demapper Implementation for Wimax with respect to Gray Coded Mapping and

ML demapping techniques as discussed above. The recently proposed algorithm explained in

section 2.2 reduce the DVB-T2 complexity by 60% with RCQD was analyzed and modeled in C

to verify the results and complexity, C modelling is explained in next section because software

modeling gives good analysis on flexible parameters, memories, algorithm behavior and some idea

about proposed architecture. In second phase algorithm was implemented in LabVIEW using fixed

point datatype after getting successful results same code is imported in LabVIEW FPGA project

under a target. At last same demapper is implemented in LabVIEW FPGA IP builder to get more

optimized results.

3.1. C Modelling of Proposed Demapper

In DVB-T2 gray coded constellation mapping are used on all QPSK to 256-QAM [1] In

the start all the constellations are normalized by their normalizing factor given in table 5.

Constellation Style Normalizing Factor

QPSK 𝑧

√2

16QAM 𝑧

√10

34

Flexible Implementation of Multi-standard demapper Using LabVIEW

64QAM 𝑧

√42

256QAM 𝑧

√170

Table 3-1

The specific angles proposed in [2] given in equation 2 are applied to all constellations points using

equation1.

In proposed model mapper/ demapper is first of all normalized points are rotated by certain

angles depending upon modulation type. This rotation describes some interesting properties of

rotated constellation [2].

1. As I and Q are uniformly distributed over I&Q axis. So the distances among all M

points will be given by 𝑑1𝐷,𝑚𝑖𝑛 = 2𝛽𝑠 sin 𝜃 1a.

{
𝑧𝑖 = 𝑠𝑖 cos 𝜃 − 𝑠𝑄 sin 𝜃

𝑧𝑄 = 𝑠𝑖 sin 𝜃 − 𝑠𝑄 cos 𝜃
 1

𝜃 = tan−1 1

√𝑀
 2

2. The points 𝑧𝐼 &𝑧𝑄 transformed after rotation such that the transformed integer

belonged to [0-M-1], transformation is given by equation 6 & 7.

𝑇𝐼 =
𝑍𝐼

𝑑1𝐷,𝑚𝑖𝑛
+

1

2
(𝑀 − 1) 6,

𝑇𝑄 =
𝑍𝑄

𝑑1𝐷,𝑚𝑖𝑛
+

1

2
(𝑀 − 1) 7,

3. The difference between consecutive two transformed I and Q points will always

be 1.

4. At receiver the received 𝑦𝐼 and 𝑦𝑄 are equalized as equation 8:

35

Flexible Implementation of Multi-standard demapper Using LabVIEW

𝑌𝑚 =
𝑦𝑚

𝑑1𝐷,𝑚𝑖𝑛 ℎ𝑚
+

1

2
(𝑀 − 1) 8,

5. At receiver this rotation technique requires 2√𝑀 distances to be computed for 1

LLR.

6. The regions among which distances computed are given by equation 4.

𝑇(𝑌𝑚) = {

[0,2𝑑 − 1], 𝑖𝑓 𝑌𝑚 < 𝑑,
[𝑀 − 2𝑑, 𝑀 − 1], 𝑖𝑓 𝑌𝑚 ≥ 𝑀 − 𝑑,

[⌊𝑌𝑚⌋ − 𝑑 + 1, ⌊𝑌𝑚⌋ + 𝑑 𝑒𝑙𝑠𝑒,

4,

Where 𝑑 =
√𝑀

2

Unlike ML demapping and demapping for Gray coded constellation which require all 2𝑚 and 2𝑚/2

computation for one LLR. The proposed algorithm requires maximum 2√M computations for one

LLR in all four type of modulation.

In DVB- T2 standard grey coded mapping is applied to the points with the angles to rotate

each constellation, so in our low complex demapper we also use grey coded mapping but with

certain proposed angles as given in equation 2 rotation is done when points are mapped by equation

1 and theta is given by equation 2. Let the grey coded mapping points for 16-QAM are given by

in step 1:

double simple_constellation_16QAM[16][2] = {{3.0, 3.0},{3.0, 1.0},{1,3},{1,1},
 {3, -3},{3, -1},{1,-3},{1,-1},
 {-3, 3},{-3, 1},{-1,3},{-1,1},
 {-3, -3},{-3, -1},{-1,-3},{-1,-1}};

Where index of all sixteen points are mapped in such a way that each index corresponds to

symbol number of the point. After mapping all these points are normalized by factor given in

DVB-T2 specification sheet as in code given by in step 2:

Nomlzd_simple_constellation_16QAM[i][j]=(simple_constellation_16QAM[i][j]/(sqrt(10.0)));

36

Flexible Implementation of Multi-standard demapper Using LabVIEW

 After normalizing all 16 points now rotation is required in mapping in step 3, so normalized

points are rotated using equation 1 and 2 and in C given by:

rotated_constellation_16QAM[i][0] =

Nomlzd_simple_constellation_16QAM[i][0]*cos(atan(1/sqrt(16.0))) -
Nomlzd_simple_constellation_16QAM[i][1]*sin(atan(1/sqrt(16.0)));
 rotated_constellation_16QAM[i][1] =
Nomlzd_simple_constellation_16QAM[i][0]*sin(atan(1/sqrt(16.0))) +
Nomlzd_simple_constellation_16QAM[i][1]*cos(atan(1/sqrt(16.0)));

Rotation is the last step on transmitter side, after rotation points are transmitted through the

channel where there are no of parameters affects the transmission like noise and fading. Received

point is then transformed by equation 8.

By observing equation 8 for 16-QAM it is noted that one portion here in equation is

constant i.e 7.5 for 16QAM as M=16 while in second portion distance between two consecutive

points are given by equation 1a so instead of using division we take reciprocal then multiply to

perform operation. On receiver the transformation of received point is given in C code as:

Y_I = y_I_16QAM/(d_1D_min_16QAM*h_I) + 7.5;
Y_Q = y_Q_16QAM/(d_1D_min_16QAM*h_Q) + 7.5;

 Where y_I_16QAM and y_Q_16QAM are the rotated and received points through noisy

and fading channel. Transformation converts the received point into an integer point also receiver

have rotated and transformed copy of all 16-QAM points then there is a bit wise operation

performed on the points which lies in the region selected with respect to the received point the

more detail of region selection is explained in implementation section. In 16-QAM case the region

consists of 8 points among these 8 points distance will be computed four for I component and four

for Q component. The transformed points of 16-QAM are sorted in order for both I and Q and

initialized in receiver memory with index as symbol number. In second stage in receiver after

region decision each point is fetch from transformed sorted memory to compute distance from

received point the distance computation formula is given in equation 2b:

LLR (𝑣𝑡
𝑖: 𝑂) ≈ {ℎ𝐼(𝑌

𝐼 − 𝑇𝐼)) 2 +
𝑥𝑡 𝜖𝑥0

𝑖
𝑚𝑖𝑛 (ℎ𝑄(𝑌

𝑄 − 𝑇𝑄)) 2 . (
1

𝜎2)} -

37

Flexible Implementation of Multi-standard demapper Using LabVIEW

 {ℎ𝐼(𝑌
𝐼 − 𝑇𝐼)) 2 +

𝑥𝑡 𝜖𝑥1
𝑖

𝑚𝑖𝑛 (ℎ𝑄(𝑌
𝑄 − 𝑇𝑄)) 2 . (

1

𝜎2)} 2b,

As equation 2b is used to compute distance where 𝑌𝐼is the received and transformed point

for I component while 𝑇𝐼 is the transformed point fetched from demapper memory with respect to

the region. In this all fetched point’s symbol numbers are processed by bit wise operation as shown

in C code below and in EU distance computation considering h_i = h_q=0.

shifter=3-k;
 b[k]=((Sorted_I_16QAM[i][0]&bh[k+4])>>shifter);
 if (b[k]==0)
 {
temp_f[k][0]=(pow((Y_I-Sorted_I_16QAM[i][1]), 2))+ (pow((Y_Q-Sorted_I_16QAM[i][2]), 2));

Equation 2b in detail describes three main operations to generate one LLR i.e first to

compute distances second these distance computations are bit wise dependent also shown from

equation that if bit is 1 at bit location 0 or bit is 0 at bit location 0 this bit wise operation is

performed on symbol number i.e eight-bit unsigned number gives eight bits from 00000000 to

11111111. Last operation is the minimum finder which computes the minimum distances among

all distances computed with respect to bit location and bit value the decision is based on LLR value

if the LLR<0 then decoded bit is 0 and if the LLR>0 then decoded bit will be 1. The output of

demapper is LLR in case of iterative demapper, the erroneous output of demapper is handled with

turbo decoder of using FEC techniques in the communication block.

3.1.1. Results and Analysis of C Modelling

C modelling code shown above is only for 16-QAM mapping and demapping, while in actual

modelling is done from QPSK to 256-QAM to model the low complex demapper. The overall

analysis of modelling shows that this demapper requires three Block Rams of depth 680 elements.

One ram is of transformed sorted I components, second ram is of transformed sorted Q component

and third ram is symbol numbers.

Also there is a need of control signal line which configure the demapper to required modulation

type and inside demapper control signal configure memories, Loops, counters, regions etc.

38

Flexible Implementation of Multi-standard demapper Using LabVIEW

The overall arithmetic operations involved in several blocks of demapper are:

Arithmetic

Operation

Transformation

I

Transformation

Q

Region

I

Region

Q

Distance

Computation

Addition 1 1 1 1 1

Subtraction 0 0 1 1 2

Multiplication 1 1 0 0 4

Table 3-2

The blocks involved in demapper has I and Q transformation, I and Q region and Distance

computation with minimum finder. We have to design a high throughput but most optimized

architecture of a demapper with least resources. If we look at blocks transformation for both I and

Q can be executed simultaneously and same with region computation both can be processed in

parallel. Whereas distance computation is a bit wise operation also it involves to fetch sorted I,

sorted Q and symbol numbers from block memories using counters and counters start address

depends on the selected region. Also this operation is performed in nested loops outer most loop

executes twice one for I component and one for Q component whereas internal loop iteration

depends on control signal i.e which modulation is selected for different modulation no of iterations

are as follows:

1. For QPSK internal loop iteration equals to 2

2. For 16-QAM internal loop iteration equals to 4

3. For 64-QAM internal loop iteration equals to 8

4. For 256-QAM internal loop iteration equals to 16

The loop iteration number is also selected by control signal that which modulation is used for

transmission control automatically configure the loop counter to required number for distance

computation as internal loop is enclosed in another for loop which runs for two times one for

I and one for Q so at last we can say that:

39

Flexible Implementation of Multi-standard demapper Using LabVIEW

Modulation Type
Points Required to demap one Symbol

QPSK
4

16 QAM
8

64 QAM
16

256 QAM
32

Table 3-3

No of memories and counters used are:

Memories Depth Counters

Sorted_I
680

1 Counter to access points

from these memories

Sorted_Q
680

Symbol Number
680

I_Offset
4

These memories are accessed

by control signal i.e with

respect to modulation type

Q_Offset
4

Transform_Add_Offset
4

Transform_Multiply_Offset
4

Table 3-4

40

Flexible Implementation of Multi-standard demapper Using LabVIEW

3.2. LabVIEW Modelling

Based on C modelling for rapid prototyping LabVIEW is selected. Model described in above

section is implemented in LabVIEW with fixed point data type to ensure the results. The developed

model tested in simulation mode on development computer to verify the results for next phase.

3.3. LabVIEW FPGA Development

By verifying LabVIEW simulation results. In this phase a LabVIEW FPGA project is created on

FPGA target and same LabVIEW model file is imported under the FPGA project for synthesis and

to ensure results on FPGA target.

3.4. LabVIEW FPGA IP Builder Development

To build a standalone demapper which can be used as a block in any SDR system which has

reduced area and high throughput, LabVIEW FPGA IP Builder is used to get the required DVB-

T2 throughput demapper and high throughput demapper. This is achieved by implementing the

same algorithm but setting different directives set.

41

Flexible Implementation of Multi-standard demapper Using LabVIEW

Implementation and Results

42

Flexible Implementation of Multi-standard demapper Using LabVIEW

CHAPTER 4. IMPLEMENTATION & RESULTS

4.1.1. LabVIEW FPGA Basics

LabVIEW FPGA is used as a tool to implement proposed demapper in parameterized hardware

approach reason for using LabVIEW FPGA is because it provides a good interface for rapid

prototyping and deployment on dedicated hardware. LabVIEW FPGA is a graphical programming

language which generates a LabVIEW vi for Xilinx compiler. Xilinx compiler extracts VHDL

constraints from vi file and generates a bit file for target as shown in figure. Bit file generation

process include synthesizing, resources estimation and timing estimation, Placing and routing.

Figure 4-1 LV FPGA Working [12]

 It is necessary to learn execution flow in LabVIEW FPGA. As it is a graphical

programming language. LV FPGA to ensure data synchronization and execution flow uses enable

chain. In LV, node executes when data is available at its input when node finishes execution the

ata is passed to next node. Let’s take example of NOT function execution in LabVIEW as shown

in figure:

43

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 4-2 Enable Chain [12]

 In this figure the code is transformed in to three sections Logic, Synchronization and Enable

Chain. In this the first upper portion which correspond to logic and second portion for

synchronization register which ensure that data will only available at output on rising edge only

and the third portion enable chain is used to ensure that the logic implemented execute in hardware

in same manner as implemented on Block Diagram. So LabVIEW implements the enable chain

after every operation automatically to ensure auto pipelining and data synchronizing.

 If user wants to avoid enable chain and wants to observe critical path using LabVIEW

FPGA one must have to implement all the code inside Single Cycle Timed Loop (SCTL). SCTL

remove all enable chain registers and one can observe the critical path inside the SCTL one of

example of simple code with SCTL and without SCTL is shown in figure below. This example

shows that the code inside SCTL takes 1 cycle to complete on other hand code in while loop takes

6 cycle to complete the same code as shown in below figure. Benefit of using LV FPGA is that

one can run different piece of codes at different clock rate as LV FPGA support derived clock rates

also.

Modes of a LabVIEW FPGA VI. LabVIEW has two main execution mode.

 Reentrancy Mode.

44

Flexible Implementation of Multi-standard demapper Using LabVIEW

Reentrant allow the program to execute in parallel whenever this process called by

multiple instances LabVIEW allocate its separate copy on hardware to execute the

process. So this has lowest call overhead, maximum resources and fastest execution.

 Non Reentrant Mode.

Non Reentrant allow the program to use a single copy of hardware called by multiple

process. This has minimum hardware resources and not as fast as reentrant mode.

Figure 4-3 SCTL [12]

45

Flexible Implementation of Multi-standard demapper Using LabVIEW

After implementation of all the hardware logic right click on VI and select target as

development computer with simulated I/O to check and verify the algorithm results. The module

wise hierarchy of implemented demapper is shown in following figure and its detail

implementation in further topics.

Figure 4-4 Proposed Demapper Hierarchy

4.1. Experimental Setup

Experimental setup of demapper includes a RIO platform USRP-RIO which supports 2x2 MIMO

transceivers with tunable frequencies from 50MHz to 6GHz, Kintex 7 FPGA, 120MHz Bandwidth

per channel and with an integrated GPS receiver. LabVIEW FPGA is used to program RIO

platform which include all HDL and Vivado concepts in configuration. The experimental setup

figure is shown in figure below:

46

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 4-5 Experimental Setup

4.2. Proposed Demapping with LabVIEW FPGA

The algorithm proposed in [2] has three stages through which received points are processed to

generate LLRs. Three stages include Transformation, Region and distance computation with

minimum finder. The whole demapper is configured by a control signal to select type of

constellation. Implementation of these three stages are following.

4.2.1. Transformation

Equation 6 and 7 gives the complete details of transformation which includes one adder, one

multiplier and two memories for add value as constant and multiplier value as constant with respect

to selected constellation scheme as shown in figure 8a. As M and 𝑑1𝐷,𝑚𝑖𝑛 are the parameters in

47

Flexible Implementation of Multi-standard demapper Using LabVIEW

equation 6 and 7 have different values of add and multiply constant for all four constellations. The

points received are first processed by transformation which has one 25-bit multiplier and one 26-

bit adder for I component transformation and same will be for Q component. The two

transformation block for I and Q will execute in parallel as shown in figure 8a. While architecture

and implementation in figure 8b. When any constellation type is selected on control line the add

and multiply offset memory values are automatically fetched for transformation, different values

for different constellations as shown in table 6. In this table adder constant memory allocated 8

bits in total where out of 8, 7 will be designated to integer and 1 for fractional part.

 Where multiply constant memory is represented in 13 bits out of them 7 for integer part

and rest for fractional part.

Control Signal Adder Constant Memory Multiply Constant Memory

0 1.5 1.578

1 7.5 6.51562

2 31.5 26.125

3 127.5 104.5

Table 4-1

48

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 4-6 Transformation (a)

Figure 4-7 Transformation (b)

The parallel implementation of transforming blocks for I and Q is configured by execution

mode i.e re-entrant or non-re-entrant explained in section 3.3.1.

Over all the transformation consist of following components:

 One Adder (26)

 One Multiplier (25)

 Two Memories (depth 4)

49

Flexible Implementation of Multi-standard demapper Using LabVIEW

4.2.2. Region Computation

After the transformation y_I and y_Q both are converted to Y_I and Y_Q simultaneously and

simultaneously regions computed using Y_I and Y_Q. In regions frame there are two Mux one for

I and one for Q using case structure. The control line is mapped to Mux control line to select type

of constellation. Region computation is a function which is used in reentrant mode. Which

compares the incoming transformed values with respect to equation 4 either region 1 or region 2

or region 3 will be selected. The detailed implementation of region computation is explained in

below section.

Figure 4-8 Region

4.2.2.1. QPSK Rotation & Demapping Region

First of all, at transmitter side gray coded mapped constellation is normalized by described

factor, constellation diagram for gray coded style in QPSK is shown in figure 4-8. Also a LUT is

used to store the values of gray coded QPSK constellation points where LUT index is the symbol

number i.e at each symbol number there are two points I and Q. In second step the whole LUT is

divided by normalizing factor.

50

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 4-9 QPSK Normalized

These normalized points i.e four for each I and Q are processed through equation 1 and 2 to project

them at specific angle. Equation 2 describe 26.5𝑜rotation angle of QPSK as shown in figure4-9.

After rotation each symbol is transmitted through fading channel.

Figure 4-10 QPSK Rotated

 Receiver has a rotated and transformed copy of each constellation in LUT for distance

computation in a manner that sorted I and sorted Q. When rotated point is received through fading

51

Flexible Implementation of Multi-standard demapper Using LabVIEW

channel first of all received point is equalized and transformed shown in “red” color in figure 10.

Regions are computed with respect to the received points. Radius used by QPSK demapping is 1.

There are two constant regions in each constellation, in QPSK case

 if 𝑌𝐼< 1 then search region will be between 0 to 1 is constant region,

else if 𝑌𝐼 ≥ 3 then search region will be between 2 to 3 is constant region,

 and last region is dynamic with respect to the received point i.e if point received is ≥ 1 and less

than 3 than dynamic search region will be in [⌊𝑌𝑚⌋ − 𝑑 + 1, ⌊𝑌𝑚⌋ + 𝑑 .

 From figure let if the point received is shown by red point in figure 4-10 (0.25, 1.75). As

I component has value less than 1 so search space is region 1 for Q component whose value is 1.75

is case of dynamic region, the search space is between 1 to 2.

Figure 4-11 QPSK Rotated & Transformed

The distance computation on I axis will be done in I first constant region as shown in figure i.e

there are two points in I first region Euclidean distance will be computed with these two points

using equation 5, values will be saved in with respect to symbol binary number i.e 0 or 1 registers.

Same process of region computation is done for Q point which has a dynamic region as shown in

52

Flexible Implementation of Multi-standard demapper Using LabVIEW

figure two points lies in Q dynamic regions so in this way distance will be computed between two

pints using equation 5.

 Here is QPSK it is observed that instead of using all 8 points four each for EU distance

only points in regions give accurate LLR generation. This low complex distance computation gives

more clear idea in higher order constellation demapping case.

4.2.2.2. 16 QAM Rotation & Demapping Region

In 16-QAM on transmitter side firstly all points are gray mapped as shown in figure 4-11

in array as a LUT with respect to the symbol number on LUT index. LUT has sixteen rows and

two columns where column one corresponds to I component and column two corresponds Q

component where belonging index is the symbol number.

Figure 4-12 16QAM Normalized

53

Flexible Implementation of Multi-standard demapper Using LabVIEW

 In second step all these sixteen points were normalized by factor
1

√10
. The rotation angle

computed for 16QAM is 14.03𝑜 . The overall constellation is Rotated Cyclic Q Delayed by angle

14.03 a s shown in figure 4-12.

Figure 4-13 16QAM Rotated

 To reduce algorithm and hardware complexity transformation is applied to rotated

constellation the transformation parameters are constant for each constellation, these transformed

points are placed in memories Sorted I and Sorted Q. The rotated point 𝑍𝑀 is divided by a constant

distance between two consecutive points and a constant add offset converts the rotated point into

rotated and transformed as shown in figure 4-13. With respect to the hardware limitations and

complexity divide function is avoided so as distance is constant so multiplier is used by taking

reciprocal of constant distance.

 Let the received point in 16 QAM constellation is blue dot (10,14), then for Euclidean

distance computation search region will be shown in figure 4-13 with overlapping region is the

search space for received point. As 10 for I component lie in the dynamic region explained in

equation 4 and 14 for Q lie in region 2. So overall there will be two search spaces one for I and

one for Q and in total there will be eight points in both search spaces with respect to programming

there will be two loops one for I and one for Q each will be running for four time. After traversing

54

Flexible Implementation of Multi-standard demapper Using LabVIEW

from eight point in regions in 16QAM each symbol will be recovered. In case of 16QAM there

will be four LLRs for each symbol.

Figure 4-14 16QAM Rotated and Transformed

4.2.2.3. 64 QAM Rotation & Demapping Region

In 64-QAM modulation first of all on transmitter side constellation is gray coded mapped as shown

in figure 14 using LUT and index of the LUT is symbol number in 64 QAM case the symbol

number is represented in six bits. The LUT has 64 rows and 2 columns. First column of LUT

contain I component while second column contains in gray coded style. In second step

constellation needs to be normalized by factor
1

√42
. After normalizing 64-QAM constellation the

normalized points are processed by equation 1&2 for RCQD. The rotation angle for 64-QAM

constellation is 7.12𝑜 computed by equation 2 in equation 1 as shown in figure 15. The main aim

of this demapper is to design a low complex demapper to reduce complexity some functions and

55

Flexible Implementation of Multi-standard demapper Using LabVIEW

data types needs serious attention for example some constant numbers are used in division we can

take reciprocal of constant and then use multiplier, also if there are fixed point negative and non-

negative numbers in fractional format it will be more difficult to handle them with respect to

overflow, wrap, saturate, rounding operations in hardware.

Figure 4-15 64QAM

56

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 4-16 64QAM Rotated

So to overcome complexity transformation is needed, figure 4-15 shows all 64 points equally

distributed in all four quadrants. In transformation all these 64 points transformed in to first

quadrant in such way that last minimum point on I axis correspond to zero in first quadrant and

maximum point on I axis correspond to 63 on I axis i.e from zero to M-1 for all constellation types,

same case with Q component transformation.

 This transformed copy is used at receiver side in memories sorted I and sorted Q to compute

Euclidean distance with a received point as shown in figure 16 through channel. At receiver,

received rotated point is transformed, then search regions computed among which Euclidean

distance will be computed. Let’s take an example for 64-QAM region computation case in which

point received is shown with “black dot” on points (14,32).

 Applying equation 4 for search region computation for both I&Q the search region will be

the dynamic regions having with floor function minus ‘d’ plus one. For I search points start from

57

Flexible Implementation of Multi-standard demapper Using LabVIEW

11 to 18 while in case of Q the search points will start from 29 and will search up to 36 as shown

in figure 16.

When the points received the counters of memories will be automatically adjusted to

desired points for region computation the detailed implementation of memories and counter offsets

will be discussed in next portion as this portion mainly focuses on region computation.

Figure 4-17 64 QAM Rotated and Transformed

58

Flexible Implementation of Multi-standard demapper Using LabVIEW

4.2.2.4. 256 QAM Rotation and Demapping Region

In 256-QAM i.e 8 bits per symbol is the highest data rate supported by DVB-T2. First of all, on

transmitter side the gray coded constellation is mapped in such a way that mapped points belong

to LUT with having symbol numbers as index of the LUT as shown in figure 4-17 and these

mapped points are then normalized. The normalizing factor for 256-QAM is
1

√170
 as shown in table

5. The gray coded constellation and rotated and normalized constellations as shown in figure 4-18

are equally distributed among four quadrants.

 The constellation is then rotated by angle 3.57𝑜 by equation in equation 1 as shown in

figure 4-18.

In order to reduce hardware complexity and low complex search spaces among whole

constellation transformation is applied to each constellation in such a way that the minimum and

least index point in constellation correspond to 0 in first quadrant and maximum point and index

in the constellation correspond to M-1 point in the first quadrant. Also transformation convert the

all points to integer which gives easy access to the set counter and search in the LUT sorted I and

59

Flexible Implementation of Multi-standard demapper Using LabVIEW

sorted Q this portion will be explained in the hardware implementation portion in detail.

Figure 4-18

Figure 4-19 256 QAM Rotated

60

Flexible Implementation of Multi-standard demapper Using LabVIEW

The point received through fading channel is used to compute the search region. Let the

received point is shown with red dot at (14,1) in figure 19 is computed by processing with equation

8. The received point is transformed and is placed in figure 19 for region computation. As received

point I value ‘1’ is in dynamic region and Q is in 1st region. The search space for received point

on 256QAM is from 7 to 22 for I component i.e in dynamic region three for Q component 1 which

is less than distance so the region for Q will be from 0 to 15. After receiving the point memory

counter for search region will set from 0 to 15 for Q and from 7 to 22 for I.

Figure 4-20 256 Rotated & Transformed

61

Flexible Implementation of Multi-standard demapper Using LabVIEW

4.2.3. Block RAMs for Symbol Number, Sorted I and Sorted Q

In total three block rams are used in distance computation we know that symbol number

corresponds to I and Q points. So the three representation of memories are of Symbol Number,

Sorted I and Sorted Q in such a way that QPSK sorted I component start from location 0, 16QAM

sorted I component start from location 8, 64 QAM sorted I component start from location 40 and

168 in case of 256 QAM.

 In case of Q sorted component for distance search space QPSK start location is 4, in

16QAM 24 is start location, 104 is start location in 64 QAM and 424 is the start index of 256 QAM

in sorted Q case.

 In all Block Memories depth will be 680 of symbol number, I sorted and Q sorted. As these

memory locations are filled with rotated and transformed values of all constellation as shown in

above region figures. For every received point all these three memories have to be traversed with

respect to the regions using memory start offset for each constellation.

The output of the region subvi is the search space start value which indicates that in constellation

from which location traversing should start. This “start traversing value” adds with memory offset

explained in above para give the final memory location from which search have to begin. Then

there is a most outer loop which runs two time for each constellation one for I component and one

for Q component. Inside the outermost loop a comparator checks that if the iteration value is equal

to 1 then pass memory counter start value i.e region output plus sorted Q value inside the inner

loop i.e for distance computation. Else use region output plus sorted I value as input to inner loop

for memory location as shown in figure 21.

 As from region figures of each constellation type it is clear that the distance points to be

searched in each are as follows:

Sr. No Constellation Type Points Used in

Distance

62

Flexible Implementation of Multi-standard demapper Using LabVIEW

1 QPSK 4

2 16-QAM 8

3 64-QAM 16

4 256-QAM 32

Table 4-2

Figure 4-21 Memory Address Gen & Distance Computation

With the outer most loop which is for I and Q there is another loop inside whose iteration

terminal is used as counter to read from block memories in such a way that region start value plus

memory offset I and Q is the starting location for traverse and counts up depends on constellation

selected using iteration of inner loop. Execution of both loops are as follows:

 For QPSK inner loop runs two times for I and two times for Q.

 For 16-QAM inner loop runs four times for I and four for Q

63

Flexible Implementation of Multi-standard demapper Using LabVIEW

 For 64-QAM inner loop runs eight times for I and eight for Q

 For 256-QAM inner loop runs sixteen times for I and sixteen for Q

The inner most loop counter configured with control line when type of constellation is selected

the counter index mapped to the block memories read the desired region points from memories

(Symbol Number, Sorted I and Sorted Q). Where after fetching the symbol number it is converted

to binary Boolean values e.g if symbol number is 255 gives 11111111.

4.2.4. Euclidean Distance and LLR Computation

Inside inner loop Euclidean distance has to be computed in the bit wise manner (Symbol Number

converted to Boolean). Largest distance computed is represented is in eight bits and updated in

two registers which were initialized with highest value will be updated with respect to incoming

Boolean value 0 or 1 in such a way that if incoming Boolean value is 0 the register 0 will be

updated and in case of incoming Boolean value 1 register 1 will be updated. The algorithm for

minimum finder implemented in LabVIEW FPGA is given below and shown in figure 22:

Bit_Value /// Symbol Number’s Binary Value Bit Wise

Distance// as shown in equation 5.

If (Bit_Value==0)

If(Distance<Bit_0_Register[index])

Bit_0_Register[index]=Distance

Else Keep (Bit_0_Register[Index])

Else if(Bit_Value==1)

If(Bit_Value==1)

If(distance<Bit_1_Register[Index])

Bit_1_Register[Index]=Distance

Else Keep(Bit_1_Register[index])

At the end when registers are updated the log likely hood ratio(LLR) is computed by subtracting

the 0 Bit registers and 1 Bit registers. The LLR decision is based on sign if sign is negative then 0

64

Flexible Implementation of Multi-standard demapper Using LabVIEW

will be decoded and if LLR is positive 1 will be decoded and same information will be used as

apriori information for further blocks.

Figure 4-22 LV FPGA LLR Computation with Min Finder

This is a Minimum finder and Euclidean distance finder block implemented with a specific design,

more optimized minimum finder and overall design with pipeline architecture increased

throughput design using NI LabVIEW FPGA IP Builder with Vivado HLS is explained in next

topic in which new directive were explored and a high throughput flexible demapper is

implemented. While result of above explained demapper are shown in next section.

The arithmetic operation used in LabVIEW FPGA are:

65

Flexible Implementation of Multi-standard demapper Using LabVIEW

1. 2 Subtractors

2. 1 Adder

3. 2 Multipliers

4.2.5. Results

Before describing the results, the optimizing way of LabVIEW FPGA must be described.

LabVIEW FPGA uses most optimized hardware architecture for the algorithm. For example, if we

use a multiplier with two inputs. The values on two inputs are let’s say at one input there is a

variable input while second input is zero LabVIEW did not use any multiplier in this case

LabVIEW do not use any DSP48E and same case if the multiplier’s one input is 1 in this case by

estimating the output LabVIEW do not use any DSP48E.

 If the values wired as control, then LabVIEW will implement DSP48E as multiplier. In the

code described in chapter 4 we cannot implement our pipeline stages because single cycle timed

loop is not supported with nested loops as described in start of chapter 3 LabVIEW uses its enable

chain on every operation as pipeline register to avoid enable chain it is necessary to use SCTL but

SCTL do not support nested loops so, the code in LabVIEW FPGA is implemented with high

throughput functions and all the synthesizing, optimization, device estimation, timing estimation,

placing and routing is done by LabVIEW FPGA itself.

 In result LabVIEW FPGA compiles the code at 248 MHz with 4 DSP48Es i.e 0.3% Block

RAM 0.4% and slice register 1.9% all these results are with Rho value equal to 1 as shown in

figure below.

66

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 4-23 LV FPGA Resources

In these results 3 block rams corresponds to memories used for symbol number, sorted I and

sorted Q. Where 4 DESP48E corresponds to 2 multipliers used in transformation function 1 in I

component transformation and 1 in Q component transformation and 2 multipliers which are

used as square for difference between YI and TI and YQ and TQ. Rho is assumed as 1.

 This demapper is designed to take received symbols automatically while constellation

type is mapped to control line whatever constellation type is on control line it will configure all

registers, counters, memories and loops automatically and generates LLRs for QPSK it took 3

cycle, 16-QAM 6 cycle, 64-QAM 12 cycle, 256-QAM 24 cycle for the output at clock 248 MHz

Modulation Type Clock Cycle required to

compute 1 LLR

Clock Rate

QPSK 3 248MHz

16-QAM 6 248MHz

64-QAM 12 248MHz

67

Flexible Implementation of Multi-standard demapper Using LabVIEW

256-QAM 24 248MHz

4.3. Proposed Demapping with LabVIEW FPGA IP Builder with

Vivado HLS

LabVIEW FPGA module enables your LabVIEW skills to program FPGA with LabVIEW skills.

In previous section we learn some programming concepts of LabVIEW FPGA and to model,

design and implement a demapper in detail with constellation plots of all supported constellations

in DVB-T2. There are some limitations or we can say algorithm constraints that we observed while

using LabVIEW FPGA module which limits our throughput in the design like we can’t use SCTL

for whole code as there are nested loops in the algorithms so in LV FPGA module we can’t use

SCTL to avoid enable chain to insert our pipeline stages and latency. This constraint is better

handled using IP builder.

 Moreover, there are number of directives of Vivado HLS are available to optimize and

increase throughput design. Directive setting is the iterative process in FPGA IP builder in both

Vivado and LV FPGA as shown in figure 23. First define your interface using icon/connector pane

from front panel. Each directive defines hardware approach and throughput of the algorithm. If

required architecture and throughput not achieved, then go to previous step etc. The main benefit

of using FPGA IP one can use that IP inside SCTL in LabVIEW FPGA module. Also when one

builds IP HLS gives exact timing and device utilization report instead in LabVIEW FPGA

synthesis report has more things than we used because in LV FPGA module is directly connected

to I/O.

68

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 4-24 Directives Setting Process [13]

Some common directives shown in flow chart and also used in designing the demapper are

as flows:

Initiation Interval: in top level vi is used to define how frequently your hardware take

next input or you can say the delay in clock cycles between two inputs. By default, if it is not

configured HLS will assign any clock cycles but if it is set to 1 then HLS aggressively design the

hardware architecture in a manner so that it must take next input on next clock cycle.

69

Flexible Implementation of Multi-standard demapper Using LabVIEW

Clock Rate: whenever LabVIEW FPGA project is created there is a step when you choose

an FPGA target in our case we use NI-USRP RIO as shown in experimental setup figure. In USRP

which we use the maximum supported clock is 500MHz. when configuring the directives set the

maximum clock rate after the quick estimates HLS will tell either that requested clock rate met or

not if not then why not? Where is the critical path?

Interface: define the interface of your design’s inputs and outputs in connector pane first.

Then in directive portion if input is single scalar then directive will be “Data” in case of array it is

required to set “Buffered Element by Element” or” Unbuffered” these directives will increase or

decrease the throughput of design.

Unroll: the most interesting directive in HLS in loops is unroll. By default, loop unroll is

unchecked which uses the code as hardware inside loop for no of time loop runs. When loop unroll

is checked, one must have to specify the unroll factor of loop, loop can be fully unrolled or partially

unrolled. In case of fully unroll the no of unroll factor must be equals to no of loop iterations. This

complete unroll will make no of copies of hardware equals to the loop iteration this will increase

the hardware area also increase parallelism.

After creating LabVIEW FPGA project on NI-USRP RIO target right click on IP Builder

create new VI. This new VI is on LabVIEW FPGA module with IP Builder settings. On block

diagram in IP Builder only very basic functions are available by using them one can build all

advance level functions which are available in LV FPGA module.

Transformation subvi is built in IP builder using same algorithm in C modelling and LV

FPGA keeping its execution mode on reentrant pre allocated shared clone. The transformation is

configured by control line which selects type of constellation. Where output of transformation is

the input to region computation block as shown in figure4-24.

70

Flexible Implementation of Multi-standard demapper Using LabVIEW

The region computation block take input transformed Y_I and Y_Q takes decision on

search region with respect to these points and generate output the start index from where the search

begun. The execution mode of region subvi is also reentrant pre allocated shared resource the subvi

in hardware is placed in such a way that comparison values are passed with respect to type of

constellation using MUX in hardware as shown in figure 4-24.

Figure 4-25 IP Transformation and Region

The Euclidean distance finder using IP builder has 4 multiplier using DSP48Es in this we are

using Rho with some values to multiply with difference in both cases for I and Q. This Euclidean

distance differ from explained in section 3.2.4 in this we use 8 parallel minimum finder which take

1 clock cycle to generate output. This EU distance finder block diagram is shown below in figure

4-25.

71

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 4-26 IP Distance Computation

This distance computed shown in figure and symbol number will be further used in minimum

finder. In our case we implement 8 parallel minimum finder all these will execute in 1 clock cycle

this technique will be implemented using loop unroll technique to unroll minimum finder in such

a way that for 8 LLRs it will automatically implement 8 parallel min finders. Which is transformed

in LabVIEW FPGA code for IP Builder as shown in below figure applying loop unroll directive

to make 8 parallel min finders

72

Flexible Implementation of Multi-standard demapper Using LabVIEW

Figure 4-27 IP Minimum Finder

 The throughput of any architecture is given by [13]:

Throughput=
𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒 𝑥 𝑆𝑎𝑚𝑝𝑙𝑒 𝑃𝑒𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 ,9

4.3.1. Benefits of Using LabVIEW FPGA

LabVIEW and LabVIEW FPGA is a graphical programming language which uses all concepts of

C and VHDL. Benefit of using LabVIEW FPGA is to achieve rapid prototyping and deployment

as it gives drag and drop environment and requires user configuration to configure different FPGA

mathematics operations. Also almost all major RIO devices with I/Os are easily interfaced with it

giving Target and Host access like both target and host can communicate and share data easily

during run time. User can monitor FPGA acquired and processed data on user interface in both

73

Flexible Implementation of Multi-standard demapper Using LabVIEW

FPGA target and host. Also one can directly model any algorithm in LabVIEW and use same code

in FPGA target same file will be used as LabVIEW FPGA for all types of target. Also LabVIEW

FPGA uses all concepts and directives of Verilog, VHDL and Vivado HLS in one tool, LabVIEW

automatically introduces enable chain and pipeline register to reduce critical path although one can

implement his own pipeline stages, LabVIEW can auto handle Bit growth, Wrap, Saturation,

overflow etc. type operation in FXP arithmetic. User of any environment can quickly develop any

architecture on target using LabVIEW FPGA.

4.3.2. Results

At compilation LV FPGA gives more optimized results with respect to both device and timing

utilization and placing and routing as shown in following table.

Table 4-3

So the overall throughput of the system increases as the bits’/symbol increase because initiation

interval set to 1 in directives. The snapshot compilation results for all four constellation type are

in Appendix.

Arithmetic operations/memories/counters involved in demapper are:

Constellation

Type

DSP48Es Slice

LUTs

Slice

Registers

Initiation

Interval

Latency Clock rate Throughput Pipeline

Type

QPSK 6 (0.4%) 0.5% 0.3% 1 43 418.41MHz 836.82MLLR/Sec Full

16QAM 6 (0.4%) 0.6% 0.4% 1 44 418.4MHz 1673.6MLLR/Sec Full

64QAM 6 (0.4%) 0.5% 0.3% 1 44 418.4MHz 2510.4MLLR/Sec Full

256QAM 6 (0.4%) 0.5% 0.3% 1 45 418.4MHz 3347.2MLLR/Sec Full

256QAM

(DVB-T2)

6 (0.4%) 0.6% 0.2% 33 33 250.63MHz 60.7MLLR/Sec Partially

74

Flexible Implementation of Multi-standard demapper Using LabVIEW

 Additions Subtractions Multiplications Memories Counters Total

Transformation 2 0 2 2 0 6

Region 2 2 0 0 0 4

Memory

Address

Generation

2 0 0 2 0 2

Distance Finder 2 2 4 3 1 12

Total 8 4 6 7 1

Table 4-4

75

Flexible Implementation of Multi-standard demapper Using LabVIEW

4.3.2.1. Proposed Architecture

Figure 4-28 Low Complex Proposed Architecture

 The number of pipeline stages are configured by latency directive before synthesis and initiation

interval i.e how frequently the architecture takes next input set to every 1 clock cycle in HLS

directive to achieve maximum throughput and auto pipeline architecture.

For required DVB-T2 throughput directive set explained in table 4-3 are applied to same design to

achieve the required throughput.

76

Flexible Implementation of Multi-standard demapper Using LabVIEW

4.4. LabVIEW, LabVIEW FPGA development and LabVIEW

FPGA IP Builder Comparison

Initially the demapper model developed in LabVIEW using fixed point on development computer

model explained in topic 4.2 as the tool provide rapid development but the main aim is to prototype

a demapper on FPGA for this purpose NIUSRP RIO is selected with LabVIEW FPGA toolkit

which provides utility to program FPGA using graphical programming in high throughput math

functions with FPGA concepts and shows hardware resources and timings results shown in topic

4.2.5 of same model implemented in LabVIEW. These results are not much optimized due to some

limitations as LabVIEW FPGA uses enable chain after each operation. In LabVIEW FPGA one

can implement known pipeline stages by avoiding enable chain using single cycle timed loop

(SCTL).[12] SCTL can be configured to run at any desired frequency supported by FPGA target.

In our demapper limitation is that SCTL do not support nested loops and in our algorithm there

are two loops one for I and Q where second is for EU distance. Also our main aim was to design

a block which is independent of target can be used in any target. Results obtained by LV FPGA

are shown in 4.2.5. By considering all these constraints same code is imported in LabVIEW FPGA

IP Builder under LabVIEW FPGA project which uses Vivado HLS for synthesis. In this

implementation Transformation, Region, EU distance blocks are converted in subvi as functions

for optimization using directives for each block.[13] IP Builder implements different optimization

technique like, Loop unroll, Interface for an IP, Pipeline, latency, Initiation Interval etc. So the

limitation discussed are better handled in this approach for optimized results. The developed IP

for the demapper with interface is now accessible in LabVIEW FPGA it can also be implemented

now inside SCTL as a whole demapper block [13]. Final results obtained by this approach are

shown in 4.3.2.

77

Flexible Implementation of Multi-standard demapper Using LabVIEW

4.5. Comparison state of the art of some Demappers

The comparison is based on already proposed demapper in the literature and demapper designed

by our development flow. [8] worked on DVB-T2 demapper and achieved throughput of

124MLLR/Sec with SSD whereas [4] design a universal soft demapper and achieved 35MLLR/Sec

with SSD and 93.5MLLR/Sec with Gray coded style their results are compared with our demapper

shown in table 4-5.

 Ref [8] [14] Ref [4] Our Demapper

Wireless

Standard

DVB-T2 DVB-T2 Wifi,

Wimax,

LTE,

UMB,

DVB-SH,

T2,S2

DVB-T2

Frequency 62MHz 96MHz 156MHz For Max.

Throughput

For required

DVB-T2

Throughput

418.41MHz 250.63MHz

Throughput

64-QAM 256-QAM 64-QAM 256QAM 256QAM

-

124MLL

R/Sec

(SSD)

-

96MLLR/

Sec

93.6

MLLR/Sec

(Gray)

35MLLR/

Sec (SSD)

-

3347.2MLLR/Sec(

SSD)

-

60.7MLLR/Sec(S

SD)

Area

78

Flexible Implementation of Multi-standard demapper Using LabVIEW

 Slice

Registers

 Slice

LUTs

 DSP48Es

 BRAM

791

4667

20

0

7637

32764

16

1596

2,627

6

8

1714

1258

6

5

981

1499

6

5

Table 4-5

79

Flexible Implementation of Multi-standard demapper Using LabVIEW

Conclusion

80

Flexible Implementation of Multi-standard demapper Using LabVIEW

CHAPTER 5. CONCLUSION

This thesis aims at study and implementation of rotated constellations and their demapper in

general and in DVB-T2 standard specially. DVB-T2 demapper was studied in detail which shows

that it has gray coded mapping style with some rotation angles. Rotation in constellation increase

hardware complexity specially in case of higher order constellation. There are different demapping

techniques proposed in literature like ML demapping, demapping for gray coded constellation,

sphere demapping etc. Each technique has its own complexity with respect to algorithm and

hardware both like ML demapping requires 2𝑚 computations to compute one LLR. Also different

architectures for demapper were studied some architectures are ASIP based which is used in both

iterative and non-iterative manner. One architecture presented in literature is NISC based presents

that in ASIP approach instruction fetch and decode is overhead.

 Our work contributes in implementing and designing the optimized architecture for DVB-

T2 demapper which has low complexity and high throughput. For this, algorithm explained in [2]

studied and then modelled in C have verifies the results for QPSK to 256-QAM modulation also

software modelling gives basic estimation of all arithmetic operations, memories and counters

used in the design. Second modelling is done with LabVIEW FPGA using fixed point data type

instead of double with high throughput arithmetic functions the concepts and results gathered in C

modelling are implemented in LV FPGA modelling. After modelling design is first run on

development computer then after verifying LLR results same code is used on FPGA target by just

adding the file in FPGA project the synthesis results show 24 clock cycles for each LLR for 256-

QAM case at 248MHz clock rate. Although this design is auto optimized by LabVIEW FPGA but

throughput limits by certain constraints like known pipeline stages are not implemented etc. For

most optimized hardware with maximum throughput same code is used in LV FPGA IP Builder.

 IP Builder uses Vivado HLS for synthesis. Same code as implemented in LV FPGA IP

Builder is used with little modifications in such way that transformation for I&Q placed parallel,

regions for I and Q placed parallel and both these configured in a Subvi manner such that they take

81

Flexible Implementation of Multi-standard demapper Using LabVIEW

next input after every 1 clock cycle. After region computation next blocks (Memory Offset Gen.

and Distance Computation) executes in loops in such a way that loop uses same hardware for N

times. While in case of Minimum finder for loop is configured in such a way that its unroll factor

is 8 and loop unroll implements 8 minimum finder hardware’s in parallel because in each clock

cycle when distance is computed with each symbol number, this distance and symbol number will

be same for minimum finders so we can execute 8 parallel minimum finder.

 The architecture is explained in above section granted clock rate of 418.41MHz as we

requested 500MHz. In IP Builder code optimization and throughput is done with directive settings

in our case:

Directive Requested Granted Requested (DVB-T2) Granted (DVB-T2)

Clock rate 500MHz 418.41MHz 200MHz 250.63MHz

Initiation Interval 1 Clock Cycle 1 Clock Cycle 33 Clock Cycle 33 Clock Cycle

Interface 3 Inputs , 2 Outputs 3 Inputs, 2 Outputs 3 Inputs , 2 Outputs 3 Inputs , 2 Outputs

Inline recursively True true true true

Memory Type Block ROM Block ROM Block ROM Block ROM

Latency - Auto-Granted 44 33 33

Table 5-1

So the directives are set in a manner that for every higher order modulation scheme throughput

will be increased because initiation interval granted is always 1.

82

Flexible Implementation of Multi-standard demapper Using LabVIEW

REFERENCES

[1] E. E. Standard, "Digital Video Broadcasting (DVB); Frame Structure Channel Coding and

Modulation for Second Generation digital terrestrial television broadcasting system (DVB-

T2)," ETSI EN 302 755V1.4.1, 2015 2015.

[2] J. Yang, K. Wan, B. Geller, C. Abdel Nour, O. Rioul, and C. Douillard, "A low-complexity

2D signal space diversity solution for future broadcasting systems," in Communications

(ICC), 2015 IEEE International Conference on, 2015, pp. 2762-2767.

[3] A. R. Jafri, A. Baghdadi, and M. Jézéquel, "ASIP-based universal demapper for

multiwireless standards," Embedded Systems Letters, IEEE, vol. 1, pp. 9-13, 2009.

[4] A. R. Jafri, A. Baghdadi, and M. Jézéquel, "Rapid design and prototyping of universal soft

demapper," in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International

Symposium on, 2010, pp. 3769-3772.

[5] M. Rizk, A. Baghdadi, M. Jézéquel, Y. Mohanna, and Y. Atat, "NISC-Based Soft-Input–

Soft-Output Demapper," Circuits and Systems II: Express Briefs, IEEE Transactions on,

vol. 62, pp. 1098-1102, 2015.

[6] H. A. Fahmy, S. Gasser, and K. A. Shehata, "Combining Cyclic Q Delay and Cell

Interleaver for Enhanced Performance DVB-T2 System," in The International Conference

on Digital Information, Networking, and Wireless Communications (DINWC2014), 2014,

pp. 98-102.

[7] Altera, "Constellation Mapper and

Demapper for WiMAX," 2007.

[8] M. Li, C. A. Nour, C. Jego, and C. Douillard, "Design of rotated QAM mapper/demapper

for the DVB-T2 standard," in Signal Processing Systems, 2009. SiPS 2009. IEEE

Workshop on, 2009, pp. 018-023.

[9] J. W. Park, M. H. Sunwoo, P. S. Kim, and D.-I. Chang, "Low complexity soft-decision

demapper for high order modulation of DVB-S2 system," in SoC Design Conference, 2008.

ISOCC'08. International, 2008, pp. II-37-II-40.

[10] N. M. Bahgat, D. S. Khalil, and S. H. El-Ramly, "Energy efficient design of DVB-T2

constellation demapper," in Quality Electronic Design (ISQED), 2015 16th International

Symposium on, 2015, pp. 197-200.

83

Flexible Implementation of Multi-standard demapper Using LabVIEW

[11] S. Chen, K. Peng, and F. Yang, "Simplified universal soft demapper for gray-mapped

constellation," in Wireless Communications and Mobile Computing Conference (IWCMC),

2015 International, 2015, pp. 857-861.

[12] N. Instruments, "LabVIEW FPGA Concepys Manual," 2013.

[13] N. Instruments, "Using NI LabVIEW FPGA IP Builder to Optimize and Port VIs for Use

on FPGAS," 2014.

[14] J. Yang, M. Li, M. Li, C. A. Nour, C. Douillard, and B. Geller, "Max-log demapper

architecture design for DVB-T2 rotated QAM constellations," in Signal Processing

Systems (SiPS), 2015 IEEE Workshop on, 2015, pp. 1-6.

84

Flexible Implementation of Multi-standard demapper Using LabVIEW

 APPENDIX

QPSK Synthesis

85

Flexible Implementation of Multi-standard demapper Using LabVIEW

16QAM Synthesis

86

Flexible Implementation of Multi-standard demapper Using LabVIEW

64QAM Synthesis

87

Flexible Implementation of Multi-standard demapper Using LabVIEW

256QAM Synthesis

