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Security and privacy are the two major concerns of radio-frequency identi¯cation (RFID) based

identi¯cation systems. Several researchers have proposed ultralightweight mutual authentica-

tion protocols (UMAPs) to ensure the security of the low cost RFID tags in recent years.
However, almost all of the previously proposed protocols have some serious security °aws and

are vulnerable to various security attacks (full disclosure attack, desynchronization attack,

impersonation attack, etc.). Recently, a more sophisticated and robust UMAP: Robust con¯-
dentiality integrity and authentication (RCIA)1 [U. Mujahid, M. Najam-ul-Islam and M. Ali

Shami, RCIA: A new ultralightweight RFID authentication protocol using recursive hash, Int.

J. Distrib. Sens. Netw. 2015 (2015) 642180] has been proposed. A new ultralightweight

primitive, \recursive hash" has been used extensively in the protocol design which provides
hamming weight unpredictability and irreversibility to ensure optimal security. In addition to

security and privacy, small chip area is another design constraint which is mandatory re-

quirement for a protocol to be considered as ultralightweight authentication protocol. Keeping

in view the scenario presented above, this paper presents the e±cient hardware implementation
of the RCIA for EPC-C1G2 tags. Both the FPGA and ASIC implementation °ows have been

adopted. The FPGA design °ow is primarily used to validate the functionality of the proposed

hardware design whereas ASIC design (using TSMC 0.35�m library) is used to validate the gate

count. To the best of our knowledge, this is the ¯rst FPGA and ASIC implementation of any
ultralightweight RFID authentication protocol. The simulation and synthesis results of the

proposed optimal hardware architecture show the compatibility of the RCIA with extremely

low cost RFID tags.
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1. Introduction

Radio-frequency identi¯cation (RFID) is one of the most growing identi¯cation

schemes in the ¯eld of ubiquitous computing. Non-line-of-sight capability of the RFID

systems massively increases its deployment compared to other contended identi¯ca-

tion schemes. An RFID system is mainly composed of three components: tag, reader

and back-end database. Usually, an RFID tag consists of two main parts: (i) inte-

grated circuit (IC) (memory registers and logic gates) for data storage and other

computational operations, (ii) antenna for information transmission and reception. A

commercial RFID tag contains Electronic Product Code (EPC), which represents its

unique and static identity (ID). The tag stores this EPC and other protocol speci¯c

relevant information in its memory and responds with this data on reader's query.

Upon receiving of the tag's information, the reader forwards this data towards back-

end database and then back-end database checks the legitimacy of tag's ID.

RFID standardization is a major issue in fortifying the massive investment for

development and swift deployment. There are the two standardization regulations:

ISO/IEC14443 A/B (Ref. 33) and Electronic Product Code Global Class-1 Gener-

ation-2 (EPC-C1G2).28 ISO standard provides standardized framework for devel-

opment of passively powered but mostly high cost RFID tags. EPC-C1G2 provides

the framework for development of low cost and extremely small size RFID tags. The

demand for low cost tags (0.05–0.1$) limits us to use simple logical operations in

authentication protocols' development. Typically, such tags can store 32–1K bits

and can support 250–4K logic gates for security related tasks. Table 1 summarizes

the attributes of EPC-C1G2 based RFID tags.

As far as security protocols are concerned, Chien3 categorized the security (au-

thentication) protocols into four main classes on the basis of hardware constraints:

full-°edged, simple, lightweight and ultralightweight.

(i) Full-°edged authentication protocols: This class refers to those protocols which

can incorporate traditional cryptographic functions and support one-way hash

functions, public key algorithms or symmetric encryption techniques, etc.

Table 1. Properties of EPC-C1G2 low cost RFID tags.

S. No. Performance metrics Attributes

1. Standard EPC-C1G2
2. Memory storage 32–1K bits

3. Overall logic gate equivalent (GE) 5–10K

4. Logic GE for security related tasks 250–4K
5. Power source (active/passive) Passive

6. Price 0.05–0.1$

7. Resistance to passive attacks Yes

8. Resistance to active attacks No (but depends upon the protocol)
9. Resistance to physical attacks No
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(ii) Simple authentication protocols: This class supports the pseudorandom number

generators (PRNGs) and one-way hash function on the tag's chip.

(iii) Lightweight authentication protocols: This class refers to those protocols which

may support only lightweight random number generators and cyclic redundancy

check (CRC) type simple functions.

(iv) Ultralightweight authentication protocols: These protocols involve only simple

logical operations such as bitwise XOR, AND, OR, etc.

Ultralightweight mutual authentication protocols (UMAPs) provide extremely low

security. This is mainly due to the wide use of simple T-functions26 for designing the

security algorithms, in addition to traditional cryptographic functions (which are

resource hungry). However, inclusion of non-triangular operations (rotation, per-

mutation, recursive hash, etc.) in UMAPs design augments the resistance against

various types of security attacks. A brief overview of numerous ultralightweight

authentication protocols and their security attacks is described below:

1.1. Overview of UMAP family protocols

In 2006, Periz-Lopez et al.4–6 introduced the concept of lightweight cryptography for

RFID systems. They laid down the ¯rst stepping stone of ultralightweight cryp-

tography and proposed three UMAPs for the low cost RFID tags: lightweight mutual

authentication protocol (LMAP), e±cient-lightweight mutual authentication pro-

tocol (EMAP) and minimalist mutual authentication protocol (M2AP). In all the

three UMAPs, each tag stores a static ID, an index pseudonym IDS and four internal

keys (K1, K2, K3, K4) of n bits. Because of limited computational capabilities, the tag

only performs simple bitwise logical operations (XOR, AND, OR, Modulo-2 addi-

tion, etc.). Since the computation of pseudorandom numbers is a resources de-

manding operation, it will be performed by the reader. These protocols mainly

involve three steps: tag identi¯cation, mutual authentication and pseudonyms and

keys updating. The authors estimated that both LMAP and M2AP require 1K GEs

approximately, while EMAP requires only 468 GEs (for 96-bit variable length) which

e±ciently ful¯lls the requirements of EPC-C1G2 tags. However, Alomair et al.7 and

Barasz et al.8,9 found some serious vulnerabilities in the protocols and proposed

passive attacks to reveal the concealed secret ID. They directly exploited the in-

herent poor di®usion properties of T-functions and hence retrieved all the concealed

secrets with 100% success rate.

In 2007, Chien3 formally named such low cost security solutions as

\ultralightweight cryptography" and proposed more sophisticated ultralightweight

protocol: strong authentication and strong integrity (SASI). The basic protocol

structure was similar to its preceding protocols; however, a new non-triangular

function \rotation" was introduced to combat against various desynchronization and

full disclosure attacks. Later, D'Arco and De Santis,10 Sun et al.11 and Avoine
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et al.12,13 highlighted many loopholes and vulnerabilities of the SASI protocol. They

proposed desynchronization and full disclosure attacks on the SASI protocol. The

former attack breaks the synchronization between the reader and the tag while the

latter attack discloses the unique secret concealed ID of the tag. These attacks place

the SASI protocol among vulnerable UMAPs.

In 2008, Peris-Lopez et al.14 improved their previous work and presented another

ultralightweight authentication protocol: Gossamer. A new ultralightweight primi-

tive \MixBits" has been used in Gossamer to avoid previous loopholes which occur

due to extensive use of simple T-functions in protocol designs (such as in LMAP,

EMAP and M2AP). Although the MixBits function provides strong resistance

against various full disclosure attacks, Yeh and Lo,16 Tagra et al.15 and Bilal et al.17

highlighted the poor design of the protocol and proposed some active desynchroni-

zation and denial-of-service (DoS) attacks on the protocol. In 2012, Zubair et al.18

assimilated a message counter with Gossamer protocol to avoid multiple DoS

attacks. The desynchronization issue still makes Gossamer practically infeasible for

the low cost RFID systems.

To avoid impersonation and desynchronization attacks, David and Prasad19 in-

troduced a concept of \day certi¯cate" for the reader in 2009. But the David–Prasad

protocol was also found to be vulnerable against many simple security attacks as it

also involves simple T-functions in protocol messages. In 2010, Hernandez-Castro20

proposed traceability and full disclosure attack (Tango) on the protocol. The Tango

attack ¯rst selects the good approximations (GAs) for secrets and then combines and

compares these GAs to reveal the unique ID. Barrero et al.21 improved the Tango

attack and used genetic programming to resolve the issue of exhaustive searching of

optimal GAs. Most of the security attacks proposed for UMAPs are ad hoc (protocol

speci¯c) and cannot be applied to a broader class of the protocols. The Tango attack

was the ¯rst formal security analysis framework which can be applied to broader

class of UMAPs for security analysis.

In 2012, Tian et al.2 presented quite an interesting UMAP (RAPP) using bitwise

\permutation". However in permutation operation, the hamming weight (wt) of the

input and output variables ðwðPerðX;Y Þ ¼ wtðXÞÞ remain the same. Bagheri et al.

exploited this weakness and highlighted the traceability attack on RAPP.34 In 2013,

Ahmadian et al.22 identi¯ed a desynchronization attack on the RAPP with optimal

success probability (0.25). Wang et al.23 also used the same property of the per-

mutation operation and proposed a powerful full disclosure attack on the RAPP

protocol.

Most of the previously proposed UMAPs have similar pitfalls in their designs

such as the use of T-functions, linear functions (Ro, Per, etc.) and poor messages

composition, so on, which lead towards their full disclosure. Recently, a new UMAP

has been proposed to provide robust con¯dentiality, integrity and authentication

(RCIA).1 RCIA introduces a more sophisticated nonlinear function (recursive hash)

which enhances the di®usion properties of the protocol messages optimally. Multiple
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security analysis of the RCIA protocol shows that it can withstand against all

known formal and ad hoc attacks. The detailed description of RCIA is presented in

Sec. 2.

1.2. Contribution and organization

In this paper, we present the e±cient hardware implementation of the RCIA protocol

for EPC-C1G2 tags (low cost tags) using both FPGA and ASIC level design °ows.

For FPGA based prototyping, we have used ModelSim to validate the design and

Xilinx ISE 12.3 Design Suite has been used for circuit synthesis and resource

approximations. We explore the fully occupied look-up tables (LUTs), slice registers

and fully used LUTs/FFs of FPGAs (Spartan-6 and Virtex-5). For ASIC, we have

used Leonardo Spectrum (TSMC 0.35�m) to approximate the number of gates. To

the best of our knowledge, this is the ¯rst paper that reports an implementation of

UMAP for both FPGA and ASIC design approaches. Martin et al.25 and Huang

et al.24 also reported hardware implementations of the similar types of authentication

protocols using ASIC and FPGA designs, respectively, however, they have targeted

the lightweight class protocols. There is a variety of the protocols with diverse

primitives, so this implementation will act as the stepping stone for further devel-

opment of the recon¯gurable ultralightweight cryptographic processors (presented in

Sec. 5).

The rest of the paper is organized as follows. In Sec. 2, newly proposed ultra-

lightweight RFID authentication protocol (RCIA) has been presented. Design and

hardware architecture of the RCIA is discussed in Sec. 3. Section 4 describes the

circuit synthesis and simulation results which are followed by the recon¯gurable

architecture design for the UMAPs in Sec. 5. Finally, conclusion and future recom-

mendations are discussed in Sec. 6.

2. Overview of Ultralightweight RFID Authentication Protocol: RCIA

For better understanding and completeness, in this section, we provide an overview

of ultralightweight RFID authentication protocol: RCIA. In RCIA, tags mainly use

three bitwise logical operations: AND, XOR and left rotation (Rot). A new ultra-

lightweight primitive, \recursive hash" ðRhÞ, has also been used in protocol mes-

sages, which provides hamming weight unpredictability and irreversibility to avoid

the multiple attacks. Recursive hash of any variable is a multiple step operation

which can be computed as follows:

(A) Computation of recursive hash ðRhÞ function:
Suppose let `X' is a k-bit string, where

X ¼ xk�1xk�2 . . .x0; xi 2 f0; 1g; i ¼ 0; 1; . . . ; k� 1 : ð1Þ

E±cient Hardware Implementation of URMAP
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Then the computation of recursive hash of X, RhðXÞ, involves following steps:

(i) Decimate the string X into `S' number of memory blocks, having equal number

of bits `b' in each memory block ðS ¼ k=bÞ.
(ii) After extraction of random numbers ðn1;n2Þ from messages (A;B in the case of

RCIA), tag uses the following equation to compute the Seed (index of memory

block) for recursive hash:

Seed ¼ hwðn1 � n2Þ mod S ; ð2Þ

where hw represents the hamming weight.

(iii) Calculated Seed will select the corresponding memory block ðSiÞ of the deci-

mated string X and then the tag will perform three steps to compute the ¯nal

recursive hash, RhðXÞ:
(a) Take XOR between the selected memory block ðSiÞ and other memory

blocks except the block ðSiÞ itself.
(b) Left rotate block ðSiÞ with itself; RotðSi;hwðSiÞÞ.
(c) Concatenate the resultant rotated memory block with XORed memory

blocks (de¯ned index location).

To better understand the concept of recursive hash ðRhÞ function, consider the

following example:

Example 1. Assume (for 32-bit architecture)

X ¼ 11010010100011001001110100111010 ;

n ¼ 32; b ¼ 8; S ¼ S3 . . .S0 and Seed ¼ 1 :

Then the recursive hash of X will be

RhðXÞ ¼ 01001111000100011011001110100111 :

Figure 1 shows the stepwise computation of Example 1.

RotðX;Y Þ is basically cyclic left rotation of X according to hwðY Þ.11

(B) Description of RCIA Protocol:

RCIA mainly involves three phases: pre-identi¯cation, mutual authentication and

pseudonym updating. In pre-identi¯cation stage, reader sends \Hello" message to the

tag. The tag responds with its current IDS. If the reader ¯nds the same IDS in its

database then it proceeds to next stage (mutual authentication phase) otherwise the

reader sends an error message (another \Hello" message) towards the tag.

Upon receiving of error message, the tag responds with its IDSold (previous IDS

value). This time legitimate reader will de¯nitely ¯nd the matched entry in the

database and proceeds to the next step.
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In the mutual authentication phase, reader computes two random numbers

ðn1;n2Þ, conceals them in messages ðA;BÞ and then sends message burst AjjBjjC to

the tag. The messages A;B and C are de¯ned as

A ¼ RotðIDS; k1Þ � n1 ; ð3Þ
B ¼ ðRotðIDS ^ n1;K2Þ ^K1Þ � n2 ; ð4Þ

C ¼ RotðRhðK �
1Þ;RhðK �

2ÞÞ ^ RotðRhðn1Þ;Rhðn2ÞÞ ; ð5Þ
where K �

1 and K �
2 are

K �
1 ¼ RotðRhðK2Þ;Rhðn1ÞÞ ^K1 ; ð6Þ

K �
2 ¼ RotðRhðK1Þ;Rhðn2ÞÞ ^K2 : ð7Þ

Upon receiving of AjjBjjC message, the tag extracts random numbers ðn1;n2Þ using
n1 ¼ A� RotðIDS; k1Þ ; ð8Þ

n2 ¼ B� ðRotðIDS ^ n1;K2Þ ^K1Þ : ð9Þ
The tag computes the Seed for recursive hash using Eq. (2). Then, the tag computes

its local values of C and C �, and compares both the values. If both values coincide,

then the tag authenticates the reader. Further, the tag computes and sends message

Assume (For 32-bit Architecture) 

, and Seed
Step 1: Decimate the string

Step 2: Computation of seed; here seed 1 

Step 3: a) XOR Seed with  and 

b) 

Step 4: Concatenate string to obtain

Fig. 1. An example for computation of recursive hash.
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D to the reader, where D message is de¯ned as

D ¼ ðRotðRhðIDÞ;K �
1ÞÞ ^ ðRotðRhðn1Þ;Rhðn2ÞÞÞ : ð10Þ

The tag will then proceed to pseudonyms updating stage and updates its IDS and

keys (K1;K2) using the following equations:

IDSnew ¼ RotðRhðIDSÞ � n2;n1Þ ; ð11Þ
K1;new ¼ K �

1 ; ð12Þ
K2;new ¼ K �

2 : ð13Þ
On receiving of D message, the reader computes a local version of D and D�, and
compares both values. If both values match, then the reader also authenticates the

tag and updates its pseudonyms and keys using Eqs. (11)–(13).

The quality of randomness of messages A;B;C and D was analyzed using three

well-known statistical randomness test suites: ENT,30 DIEHARD29 and NIST.31

Figure 2 shows the detailed working of RCIA protocol.

3. Design and Hardware Architecture

In this section, we present the proposed hardware architecture of the RCIA protocol

for the low cost EPC-C1G2 tags. Most of the ultralightweight authentication pro-

tocols follow a similar operational (working) model with diverse primitives. The

architecture proposed for RCIA can also be used to implement other protocols using

`Rot' primitive (such as SASI,3 RAPP,2 the one by Yeh et al.,36 R2AP,27 etc.). For

e±cient implementation (within 4K GE), we have reused the logical components

(gates and registers) as much as possible. Figure 3 shows the generic architecture. We

Reader

1. Tag Identification    Hello

IDS 

2. Mutual Authentication 

Search for a matched entry in database

A||B||C

D

If

3. Backend database Pseudonym and Keys Updating

; 

Tag 

 Tag answers with its current updated IDS and old 

if required 

Extract from  and from

If

3. Tag Pseudonym and Keys Updating

 ; 

Fig. 2. The RCIA protocol.
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have also proposed optimal design for non-triangular function (Rot function) as

explained in subsequent subsections for optimization. The proposed architecture

mainly includes four blocks: registers, arithmetic logic unit (ALU), counter and ¯nite

state machine (FSM). The low-level optimized designs and working of the archi-

tecture is as follows:

3.1. Register block

This block contains all the registers (memory blocks) required to store intermediate

computations (results), permanent variables and long-term values. In RCIA, the tag

requires 6L dynamic memory to store two entries (old and current) of its pseudonyms

ðIDSold and IDSnewÞ and keys ðK1;old;K2;old;K1;new and K2;newÞ, while 1L static

memory to store its permanent ID Moreover, the tag also requires 2L additional

dynamic memory to store nonces ðn1;n2Þ received from the reader. For hardware

optimization and e±ciency, we have reused the dynamic registers for intermediate

computations (protocol internal operations). Moreover for internal logical opera-

tions, we use 10 general purpose (GP) registers ðGP0;GP1; . . . ;GP9Þ of L bits, which

hold the intermediate results of ongoing computations and then will be reused after

the completion of previous task (computation).

3.2. ALU block

The ALU block mainly comprises of bitwise logical operators (protocol speci¯c) and

performs the speci¯ed computational operations. Hence, the designing of ALU block

      Input m-bits 

          Output 

m-bits
Clk     Reset

Out_Sel 

Write 

Reset Read

Clk    Reset 

Arithmetic Logic
Unit (ALU) 

   Finite State Machine (FSM)

Registers 

Counter

Clk  Reset

Fig. 3. Hardware architecture of the RCIA protocol.
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entirely depends upon the protocol (operational) speci¯cations. As far as optimiza-

tion is concerned, most e®orts are concentrated in designing of cost e®ective ALU

block.

In RCIA, ALU mainly performs four logical bitwise operations: AND, XOR,

rotation (Rot) and recursive hash ðRhÞ. Figure 4 shows the hardware design of ALU

for RCIA protocol.

For optimization, most e®orts are concentrated on Rot and recursive hash ðRhÞ
blocks. The remaining operators perform the basic logical operations and there is

not much room for optimization. Moreover, the modules have been optimally

reused through FSM to reduce the number of gates utilization. The recursive hash

ðRhÞ function is basically the combination of Rot and XOR operations, which

requires Seed, memory chunk selection ðSiÞ, XORing and then rotation of `b' bits

of selected memory chunk ðSiÞ with itself (for e±cient hardware implementation

k ¼ 8 bits.

3.2.1. Rotation module

Rotation (Rot) is an essential and the only non-triangular function in ALU, which

needs more optimization as remaining functions are basic logical operations (which

can be only optimally reused). The RotðX;Y Þ is cyclic left rotation ofX according to

hamming weight of Y . For Y ¼ ½y1y2 . . . ym�, each bit yi is observed and if yi ¼ 1 then

cyclic left rotation on X is performed ðxiþ1 . . .xm;xiÞ, otherwise no operation will be

performed. The RCIA protocol uses the rotation function with two variations; 8 bits

for computation of Recursive hash and m-bit rotations (for other rotation calcula-

tions).

Generally, rotation module requires one hamming weight module (computes the

hamming weight of the rotor register) and one barrel shifter. For optimization, we

implement the rotation module using a simple shifter (left) along with MUX instead

of using barrel shifter and hamming weight module. In our implementation, we use

two registers: Rotor and To Rotate. At each clock cycle, the Rotor is shifted left

while reading its MSB. If the MSB is `1', the To Rotate is rotated left; otherwise no

Register Input (m – bits)

Seed

No. of Rotations 

Reset

Clk 

AND_m 

              XOR_m

          Rotation_m

          RH_IN_SEL 

          RH_OUT_m 

ALU output

Rotation done 

Fig. 4. ALU hardware schematic for the RCIA protocol.
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operation is performed. The process is completed in m cycles avoiding hamming

weight computations.

To reduce the size of silicon, both the rotation functions have been implemented

within single rotation module. A wire \No. of rotations" selects the partial (8 bits) or

whole (m bits) registers for cyclic rotations. If we set No. of rotations ¼ 0, then it

rotates 8 bits (recursive hash computations), otherwise it rotates m bits. Figures 5

and 6 represent 8-bit and m-bit rotation modules respectively. This module imple-

ments all Eqs. (3)–(11) which incorporate rotation functions.

3.2.2. Recursive hash module

Recursive hash (RhÞ mainly involves three steps: Decimate the string into `S'

memory chunks, use computed Seed for chunk selection and compute the ¯nal re-

cursive hash using the logical operations (XOR and Rot) of selected chunk with the

whole string. The detailed computation of recursive hash is presented in Sec. 2.

Figure 6 shows the low-level design (architecture) of recursive hash module (RH-IN-

SEL and RH-OUT-m). In step-1, MUX will select the 8-bit memory chunk from the

n-bit string (according to the Seed). In step-2, selected chunk will be forwarded to the

8-bit rotation and XOR modules. The 8-bit rotation module rotates the 8-bit selected

chunk with itself. The XOR module takes XOR between ðS � 1Þ copies of 8-bit

selected chunk and n-bit string.

Finally, in step-3, the results of the both modules will be applied to de-MUX

(control signal, Seed), which will inject (place) the result of rotation module at the

speci¯ed location (8-bit zeroes) in XORed n-bit string. This module implements

Eqs. (5)–(7), (10) and (11) which incorporate recursive hash values of variables.

m-1  …. 0

m-1  …. 0

  Clk 

Clk 

1 0 

No. of rotations 

bits (0 to m-1) bits (1 to m)

Rotor register (length m to m-7) (Shift left at each clock cycle  

(To Rotate Register) 

Fig. 5. Rotation module (m-bit).
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Selected 8-
bit Chunk 

)    15  

   7 

   0 
Clk 

Seed
 Module 

                   S12 

0 

   ..…….. 

8-bit Rotation module   Seed

7    15              m-8          m-1 

……….

……….

XOR

(8 bit chunk)

(8 bit chunk)

1 0 

No. of rotations 

 bits (m-7 to m-1) bits (m-6 to m)

           Rotor register

(To Rotate Register)

Output

Clk 

Fig. 6. Recursive hash module.
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3.3. Finite state machine

Our designed FSM is a simple and traditional state machine which controls the data

°ow (communication) between various hardware components (ALU and registers).

Initially, each tag is in `Idle' state and after receiving `Hello' message, the tag moves

to the next state `Send IDS'. The tag then proceeds to the next states (receive A,

receive B and receive C) for reception of AjjBjjC messages. The computation of

pseudorandom numbers ðn1;n2Þ requires six transition states and computation of

recursive hash requires two states (XOR and rotation). After comparison of C (re-

ceived and locally computed values) the tag proceeds to ¯nal states \computation of

D state" and \pseudonym and keys update states". The FSM optimally reuses the

registers and logic gates to reduce the overall chip area, GEs and registers.

4. Circuit Synthesis and Experimentation Results on FPGA and ASIC

In this section, circuit synthesis and experimental results of the proposed design on

FPGA and ASIC is presented. We have ¯rst described the RCIA protocol in Visual C

platform for initial resource estimation and rudimentary working. Then all hardware

components of the proposed design were described in VHDL for EPC-C1G2 speci¯ed

three di®erent bit lengths (32, 64 and 96).

The experimental setting, circuit synthesis and simulation results for both FPGA

and ASIC are as follows:

4.1. Hardware implementation on FPGA

FPGA based instantiation and synthesis were conducted in XILINX ISE Design

Suite 12.3 environment for Spartan-6 and Virtex-6 FPGAs.

We have selected these FPGAs because of their extremely low-power process

technologies and optimized resource approximation. Spartan-6 FPGA is built on

45 nm low-power copper process technology with dual FF and e±cient six-input

LUTs.35 Virtex-5 FPGA is considerably larger device which is built on 65 nm copper

CMOS process technology.32 Table 2 shows the synthesis report (resource utiliza-

tion) of the proposed design on Spartan-6 and Virtex-5 FPGAs.

Table 2. Resources utilization of proposed design for various FPGAs.

FPGA Parameters/Resources 32-bit 64-bit 96-bit

Spartan-6 Number of slice registers 438 889 1221

Number of slice LUTs 684 1556 1887
Number of fully used LUT–FFs 205 665 817

Virtex-5 Number of slice registers 552 904 1345

Number of slice LUTs 602 1326 1793

Number of fully used LUT–FFs 209 686 837

E±cient Hardware Implementation of URMAP
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We have implemented our proposed design for three di®erent bit lengths (32 bits,

64 bits and 96 bits) architectures (for EPC-C1G2 tags). The implementation on

Spartan-6 XC6SLX4 device for 32-bit architecture occupied 438 register slices, 684

LUTs and 205 fully used LUT–FF pairs. For 64-bit architecture, registers slices, slice

LUTs and fully used LUT–FF pairs are increased to 889, 1556 and 665, respectively.

Now, if we further increase the bit length to 96 bits, then inevitably it requires more

resources.

For Spartan-6, it requires 1221 register slices, 1887 slice LUTs, 817 fully used

LUT–FF pairs and for Virtex-5, 1345 register slices, 1793 slice LUTs and 831 fully

used LUT–FF pairs are required. We can see from our synthesis results that increase

in bit lengths will increase the resource requirement on FPGAs (which means

resources occupancy is independent of FPGA device). So, there is a tradeo® between

the level of security robustness and hardware resources requirements, such that if we

increase the bit length then it provides more security but requires more resources and

vice versa.

Huang et al.24 also implemented and synthesized a similar EPC-C1G2 protocol

(CRC-16 based) using PadGen function (for both MOD and XOR) on Virtex-5

XC5VLX30 and Altera Cyclone II. On Virtex-5, XOR scheme requires 599 register

slices, 427 slice LUTs and for MOD scheme 643 register slides and 599 slice LUTs are

required. However, our proposed architecture (for 32-bit RCIA) requires less number

of slice registers (552) and approximately the same amount of slice LUTs (602) on

Virtex-5 XC5VLX30 FPGA, which shows RCIA protocol's preeminence in terms of

hardware than the PadGen protocol.

4.2. Hardware implementation on ASIC

We have used Leonardo Spectrum for ASIC implementation and resource estimation

of our proposed architecture (RCIA). TSMC 35�m library is used for circuit in-

stantiation and synthesis of the proposed design.

For experimental setup, operating frequency was set to 100KHz for signal clock

(as per EPC-C1G2 tag's requirement), while power supply was adjusted to 1.3V.

Number of gates GEs has been used for performance analysis of the proposed ar-

chitecture. An authentication protocol can only be considered as ultralightweight, if

it consumes a maximum of 4000 number of gates for security related tasks.3 Table 3

Table 3. Hardware results for RCIA protocol (ASIC).

Word length 32-bit 64-bit 96-bit

Number of gates required

Basic logical operations 3026 5709 7818

Rotation 819 1472 1957
Recursive hash 111 205 314

Total 3956 7386 10,089
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summarizes the synthesis report (number of gates) of the proposed design for 32-bit,

64-bit and 96-bit lengths. We can see that the area remains below 4000 GEs for 32-

bit (which is acquiescent with EPC-C1G2 tags) architecture of the proposed design.

For larger bit length, although the security of the protocol enhances, required

resources will exceed peripheral of ultralightweight class. Figure 7 shows RTL of

proposed architecture for 32-bit word length.

One of the recently published works25 has implemented two EPC-C1G2 protocols

(Burmester–Munilla and Chien–Huang) using ASIC design °ow for three di®erent

word lengths (32, 64 and 128 bits). Both the protocols incorporate PRNGs in their

designs which enhance the di®usion properties of the exchanged messages. Therefore,

the authors had put most of the e®orts in optimal designing of PRNGs (AKARI-I and

AKARI-II). They proposed multiple designs of AKARI-I and AKARI-II PRNGs and

compared area requirements, power consumption and throughput for all the designs.

After describing hardware components in VHDL, they have used UMC Faraday 90

nm library for synthesis. Like RCIA, the area remains well below (or close) to 4K for

both Burmester–Munilla and Chien–Huang protocols using only 32-bit message

length. Hence, these UMAPs also successfully conform to EPC-C1G2 tags for 32-bit

word length. For larger bit length, the area grows signi¯cantly and hence requires

Fig. 7. RTL of proposed (32-bit) architecture using TSMC 0.35�m.

E±cient Hardware Implementation of URMAP

1650078-15

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
Q

U
E

E
N

SL
A

N
D

 o
n 

03
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



more resources and power. Table 4 compares RCIA protocol with Burmester–Munilla

and Chien–Huang protocols in terms of resources requirements (GEs).

5. Recon¯gurable Architecture for UMAPs

We can also e±ciently implement UMAPs by using recon¯gurable architectures.

This alternative approach of hardware implementation e±ciently tackles the prob-

lem of rapid diversi¯cations of the UMAPs and their primitives. Figure 8 presents the

generic recon¯gurable architecture for the UMAPs based on ARX operations. The

generic recon¯gurable architecture comprises of four main blocks: Main memory

(permanent), secondary memory, FSM and ALU.

. Main memory block: This block stores all the dynamic and static variables such as

IDS, keys and intermediate results (including pseudorandom numbers) of the

protocol.

. Secondary memory block: After accessing the required data from main memory,

the tag forwards the data (variable) to the secondary memory block, which dec-

imates it in (s-bit) memory chunks. The secondary memory block can perform

bitwise shifting, cyclic rotations (hamming weight based) and other memory

operations (permutation, Sep() and Mer(), etc.). It then forwards the data towards

ALU block for basic logical operational computations.

Table 4. Comparison of RCIA with PRNG based UMAPs.

Burmester–Munilla Chien–Huang

Protocols AKARI-IA AKARI-IIA AKARI-IA AKARI-IIA RCIA

Message length 32-bit 64-bit 32-bit 64-bit 32-bit 64-bit 32-bit 64-bit 32-bit 64-bit

Number of gates 2666 5184 4026 8010 2840 5453 4185 8273 3956 7386

                    Main Memory 

Secondary Memory 

ALU 
Block 

External -Wr

Sel-1
Sel-2

Sel-3

Parity /Seed

0

K

FSM

Fig. 8. Generic recon¯gurable architecture for UMAPs.
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. ALU block: This block comprises of all the protocol speci¯c logical operators

(usually T-functions). Moreover, the ALU block and secondary memory block

collectively update the pseudonyms and keys after each successful authentication

session.

. FSM block: The FSM block mainly controls the data °ow (communication) be-

tween ALU and secondary memory. It is also responsible for optimal data orga-

nization and memory operations within the secondary memory block.

The proposed recon¯gurable architecture not only can implement our proposed

UMAP but also can implement all other ARX based UMAPs. The recon¯gurable

architecture presented here is quite similar to the generic architecture presented in

Fig. 3 (except the concept of secondary memory), so the hardware utilization on

FPGA and ASIC approximately remain the same. (More speci¯cally, for 32-bit

architecture, it occupies only 3893 logic gates on ASIC.)

6. Conclusion

One of the major challenges in RFID is to design e±cient and cost e®ective UMAP.

EPC-C1G2 tags are passive in nature, which do not possess on-chip battery and

hence can support fewer resources for basic routine working. Only a few thousand

gates can be allocated to security related tasks, which makes the design of such

cryptographic protocols more challenging. The proper hardware implementation of

such ultralightweight protocols has been neglected since long; it was unclear that

whether such protocols are practically compatible with low cost EPC-C1G2 RFID

tags. In this paper, we have addressed this question by exploring the FPGA and

ASIC implementations of the newly proposed ultralightweight RFID authentication

protocol using recursive hash: RCIA. We have proposed optimized reusable Rot

module to perform bothm-bit and 8-bit rotations and e±cient FSMs for circuit reuse

to reduce the silicon area. Our experimental results show that there is a clear tradeo®

between circuit area and message length (directly relates to robust security), so

optimization of one of them may interrupt the other. We have also proposed a

recon¯gurable architecture to address the rapid diversi¯cation of the standards.
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