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play a significant role in heat transfer within the boundary 
layer domain.

Keywords  3-D flow · OHAM · Casson fluid model · 
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1  Introduction

In many engineering branches, such as chemical and material 
processing, most of the commonly working materials and 
liquids exhibit multifaceted rheological properties, whose 
viscosity and viscoelasticity can be reshape and continuously 
deformed by extracting some external conditions or forces, 
such as stress, strain, timescale and temperature. The flows 
of non-Newtonian fluids are considering great attention from 
researchers. These fluids can be used as coolant and heat 
exchangers and with this we can reduce pumping power. 
These fluids show shear-stress–strain relationship which is 
completely different from Newtonian model. In these fluids 
momentum conservation equation is modified. Time inde-
pendent non-Newtonian fluids along with heat transfer are 
very much important and are widely used in food preserving 
and processing, power engineering and petroleum produc-
tion. The fundamental governing equations for such complex 
fluids are highly nonlinear in the mathematical modeling 
as compared to Newtonian fluids. Most of the models have 
been discussed in literature for differential, integral and rate 
type classifications. Among different Non-Newtonian mod-
els Casson fluid model is also an important model which was 
first introduced by Casson in 1959. The Casson fluid model 
reveal yield stress if shear stresses is less than yield stress, 
somehow it pretend like a solid. If shear stress is higher than 
the yield stress then it comes into the motion. Studies related 
to this model can be found in [1–4].

Abstract  Present study is devoted to investigate the Cas-
son fluid flow phenomena over an exponentially stretching 
surface at the heated wall. The stresses defined for Casson 
fluid model are reduced in the form of partial differential 
equations via boundary layer approximation and then con-
verted into the system of nonlinear ODEs by means of sim-
ilarity transformation. Present Casson fluid model is tack-
led via three different techniques: in which the numerical 
results are obtained through Runge–Kutta Felburge method 
and verified these results with the help of homotopy anal-
ysis method and modified technique known as optimal 
homotopy analysis method. Graphical comparisons and 
numerical tables are constructed to validate the results for 
three different techniques. The effects of each emerging 
parameters on velocity and temperature profiles are dem-
onstrated through graphs. Moreover, skin friction and Nus-
selt number are also calculated and also provide the com-
parison between Newtonian fluid and non-Newtonian fluid. 
It is concluded that non-Newtonian fluid shows the higher 
skin friction coefficient as compared to Newtonian fluid, 
while the Nusselt number is more dominant for Newtonian 
case as compared to non-Newtonian case for different val-
ues of temperature exponent. Temperature exponent also 
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In literature most of the studies are related to stretch-
ing surface, in which surface is stretched by keeping the 
origin fixed. Sakiadsi [5] was the first one who consid-
ered boundary layer flow over stretching surface. Later on 
Crane [6] investigated the flow over a stretching sheet. It 
was amended that velocity is directly proportional to the 
distance from the slit. Carragher [7] further extended the 
idea of Crane for heat transfer study to determine the Nus-
selt number for all possible date of Prandtl number. Heat 
distribution and fluid flow along a stretching surface with 
suction and blowing is presented by Gupta and Gupta [8]. 
Many other studies related to linear stretching surface are 
seen in [9–14].

All studies mentioned above are related to linear stretch-
ing, but not necessarily the stretching is linear, it can be 
considered as a nonlinear, power-law, and exponential 
form. In fact, most of the available physical situations in 
the literature have nonlinear stretching. Many researchers 
deal with this type of stretching by taking different assump-
tions such as Vajravelu [15] who discussed numerical solu-
tion for viscous flow over a nonlinear stretching heated 
surface. Similarly, Cortel [16] discussed the same problem 
with two different cases for nonlinear stretching sheet with 
assuming a constant surface temperature and second pre-
scribed surface temperature. These types of stretching are 
discussed by many other authors by taking different fluid 
models and heat transfer phenomena see [17–20].

Some years ago, many researchers like Magyari and 
Keller [21], Elbashbeshy [22], Partha et al. [23], and San-
jayanand and Khan [24] dealt the heat and mass transfer 
phenomena along an exponentially stretching surface by 
taking several types of thermo-physical conditions. These 
types of stretching are much important in many industrial 
processes such as annealing and thinning copper wires, 
polymer processing, production of glass sheets, paper pro-
duction. The most important factor that needs to be under 
consideration while production of any material is heat 
transfer rate when stretching velocity and temperature dis-
tributions are varies exponentially. Al-Odat et al. [25] dis-
cussed the magneto-hydrodynamic flow over an exponen-
tially stretching sheet. Later, Sajid and Hayat [26] present 
analytical solution via homotopy analysis method (HAM) 
for exponentially stretching surface within the boundary 
layer domain. Afterwards several models are examined on 
the bases of exponentially stretching surface, particularly, 
for boundary layer phenomena under different aspects and 
by taking different types of fluid models along with heat 
transfer see [27–30].

Casson fluid is defined as a shear thinning liquid that 
leads to have infinite viscosity at zero shear stress, a yield 
stress is below that pretends no flow, and illustrate zero vis-
cosity at infinite rate of shear. Due to such kind of behav-
ior, studies conducted on Casson fluid model on various 

aspects are talked on the bases of stretching surface as a 
linear, nonlinear and exponential. Pramanik [31] studied 
the heat transfer for Casson fluid over exponential stretch-
ing surface along with thermal radiation. Nadeem et  al. 
[32] considered MHD Casson fluid flow over exponential 
shrinking sheet. Some other features related to this model 
are discussed by many authors see [33–42].

Main determination of this work is to discuss the idea 
for three dimensional Casson fluid flow over an exponen-
tially stretching surface. We further consider the heated 
wall to illustrate the effects of Casson fluid. Moreover, pre-
sent study is validated through different techniques (HAM, 
OHAM and Runge–Kutta Felburge method). In this study, 
we also present the comparison with existing literature. 
The heat transfer comparison for Newtonian and non-New-
tonian fluid is studied. Graphical comparison is presented 
among above mentioned method. Comparisons for skin 
friction coefficient and Nusselt number with these three 
methods are plotted and conclusion has been drawn under 
the observations of whole analysis.

2 � Mathematical modeling

Consider steady, incompressible flow of Casson fluid along 
an exponentially stretching surface in xoy plane and fluid is 
confine in z > 0. The component of exponential stretching 
velocity along x and y direction are Uw and Vw, respectively. 
Geometry of present model is configured in Fig. 1.

The rheological equation of state for an isotropic and 
incompressible flow of Casson fluid as reported by Nadeem 
et al. [32] is given by

(1)τ
1
/n = τ

1
/n

0 + µγ̇
1
/n

Fig. 1   Geometry of the problem
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or

where µ,µB,Py,π = eijeij are the dynamic viscosity, plas-
tic dynamic viscosity, yield stress for Casson fluid and the 
product of the deformation rate, respectively. The govern-
ing equations of continuity, momentum and energy equa-
tion (absence of viscous dissipation) with constant physical 
properties for this model takes the following form,

For this flow problem the boundary conditions are,

Here (u, v,w) are the velocity components, υ = µ
/

ρ 
is kinematic viscosity and β = µ

B
√
2πc

py
 is the Casson fluid 

parameter. In addition, T  is the temperature, k is the ther-
mal conductivity, ρ is the density and cp is the specific heat. 
Uw, Vw, and Tw denote the wall velocity and wall tempera-
ture, respectively. T∞ is the ambient fluid temperature away 
from the wall.

The surface stretching velocities and the wall tempera-
ture for this study are assumed as describe by I. Notice that, 
following Chung Liu et al. [30] we use

where U0,V0, and T0 are constants. Here, L is the refer-
ence length. The following similarity transformations are 
obtained to switch the system of partial differential equa-
tions (PDEs) defined in Eqs. (4)–(6) into set of ODEs:

(2)τij =
[

µB +
(

Py√
2π

)
1
n

]n

2eij

(3)
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

(4)u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= υ

(

1+ 1

β

)

∂2u

∂z2
,

(5)u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= υ

(

1+ 1

β

)

∂2v

∂z2
,

(6)u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= k

ρcp

∂2T

∂z2
.

(7)u = Uw, v = Vw,w = 0, T = Tw at z = 0,

(8)z → ∞, u = 0, v = 0, T = T∞.

(9)Uw = U0e
x+y
L ,Vw = V0e

x+y
L , Tw = T∞ + T0e

A(x+y)
2L ,

(10)

u = Uoe
x+y
L

f ′(η), v = Uoe
x+y
L

g′(η),

w = −
�

υUo

2L

�
1
2
e
x+y
2L

�

f + ηf ′ + g+ ηg′
�

,

T = T∞ + Toe
A(x+y)
2L θ(η),

η = −
�

υUo

2L

�
1
2
e
x+y
2L z.































Using similarity transformations, continuity equation is 
satisfied automatically, momentum and energy equations 
will take the following forms:

In the presence of similarity transformations the bound-
ary conditions become,

where the prime is the differentiation w.r.t η. Here, 
Pr = µcp

/

k represents the Prandtl number. It should be 
noted that the parameter β appears in the reduced form of 
momentum, while the parameter α = V0

/

U0
(stretching 

ratio) appears in boundary conditions. While in the heat 
transfer problem contains two parameters: Prandtl num-
ber and temperature exponent A. Though system is three 
dimensional but we have some reduced cases according to 
stretching parameter α. Here it is noticed that when α = 0, 
present phenomena will reduced to the case of two-dimen-
sional flow. However, for α = 1, it gives f = g which 
shows that flow is axisymmetric. Moreover, for infinitely 
large value of β the system will be reduced for viscous flow.

The other quantities of physical interests are dimension-
less skin friction and Nusselt number; these are given by:

where Re is the local Reynold number.

3 � Numerical methods

3.1 � Homotopy analysis method

The dimensionless nonlinear ordinary differential equa-
tions (11)–(13) along with the boundary conditions 
(14) and (15) are solved first with homotopy analysis 
method which is proven as a powerful technique to solve 

(11)

(

1+ 1

β

)

f ′′′ = −(f + g)f ′′ + 2
(

f ′ + g′
)

f ′,

(12)

(

1+ 1

β

)

g′′′ = −(f + g)g′′ + 2
(

f ′ + g′
)

g′,

(13)θ ′′ = −Pr (f + g)θ ′ + PrA(f ′ + g′)θ .

(14)f (0) = g(0) = 0, f ′(0) = 1, g′(0) = α, θ(0) = 1,

(15)f ′(∞) = g′(∞) = 0, θ(∞) = 0.

(16)Cfx = (Rex)
−1/2

(

1+ 1

β

)

f ′′(0),

(17)Cfy = (Rex)
−1/2

(

1+ 1

β

)

g′′(0),

(18)Nux = (Rex)
1
2

(

−θ ′(0)
)

,
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nonlinear problems. The basic idea of this method is based 
on the choice of operator and initial guesses. Based upon 
the boundary condition, the most suitable initial guess with 
respect to the given equation are:

The linear operators are given by,

From Eqs.  (13)–(15), the nonlinear operators are 
expressed as

Here q ∈ [0, 1] is embedding parameter which relates 
the deformation from zeroth deformation to mth order 
deformation.

The zeroth-order deformation equations and boundary 
conditions are:

(19)f0 = 1− e−η
, g0 = α

(

1− e−η
)

, θ0 = e−η
.

(20)Lf =
d3f

dη3
− df

dη
, Lg =

d3g

dη3
− dg

dn
, Lθ = d2θ

dη2
− θ .

(21)

Nf [f̂ (η; q), ĝ(η; q)] =
(

1+ 1

β

)

∂3 f̂ (η; q)
∂η3

+ (f̂ (η; q)

+ ĝ(η; q))∂
2 f̂ (η; q)
∂η2

− 2(
∂ f̂ (η; q)

∂η

+ ∂ ĝ(η; q)
∂η

)
∂ f̂ (η; q)

∂η

(22)

Ng[f̂ (η; q), ĝ(η; q)] =
(

1+ 1

β

)

∂3ĝ(η; q)
∂η3

+ (f̂ (η; q)

+ ĝ(η; q))∂
2ĝ(η; q)
∂η2

− 2(
∂ f̂ (η; q)

∂η

+ ∂ ĝ(η; q)
∂η

)
∂ ĝ(η; q)

∂η

(23)

Nθ [θ̂ (η; q), f̂ (η; q), ĝ(η; q)]

= ∂3θ̂ (η; q)
∂η3

+ Pr(f̂ (η; q)

+ ĝ(η; q))∂θ̂(η; q)
∂η

− PrA(
∂ f̂ (η; q)

∂η

+ ∂ ĝ(η; q)
∂η

)θ̂(η; q).

(24)(1− q)Lf [f̂ (η; q)− f0(η)] = �f qNf [f̂ (η; q), ĝ(η; q)],

(25)(1− q)Lg[ĝ(η; q)− g0(η)] = �gqNg[f̂ (η; q), ĝ(η; q)],

(26)

(1− q)Lθ [θ̂ (η; q)− θ0(η)] = �θqNθ [θ̂ (η; q), f̂ (η; q), ĝ(η; q)].

The final solutions obtained by HAM are in the form of 
series defined as

In this method, the convergence of the solution is 
strongly depends upon the convergence control parameters 
�f , �g and �θ. For suitable values of these parameters, we 
plot the so called �− curve at the 20th order approxima-
tion in Fig. 2. We observe that the suitable ranges for these 
parameters are 0 ≤ �f ≤ −0.70, 0 ≤ �g ≤ −0.75, and 
0.1 ≤ �θ ≤ −0.75.

3.2 � Optimal homotopy analysis method

To obtain the optimized numerical value of emerging 
parameters, a moderate semi analytical technique (optimal 
HAM) is used by discretizing the squared residual error up 
to the finite mth iteration:

(27)

f (η) = f0(η)+
∞
�

m=1

fm(η),

g(η) = g0(η)+
∞
�

m=1

gm(η),

θ(η) = θ0(η)+
∞
�

m=1

θm(η).































(28)Ef
m ≈ 1

N + 1

N
∑

j=0

{

Nf

[

m
∑

i=0

fi(ηj),

m
∑

i=0

gi(ηj)

]}2

,

(29)Eg
m ≈ 1

N + 1

N
∑

j=0

{

Nf

[

m
∑

i=0

gi(ηj),

m
∑

i=0

fi(ηj)

]}2

,

(30)

Eθ
m ≈ 1

N + 1

N
∑

j=0

{

Nf

[

m
∑

i=0

θi(ηj) ,
m
∑

i=0

gi(ηj),

m
∑

i=0

fi(ηj)

]}2

,

hf , hg , hθ

-0.8 -0.6 -0.4 -0.2 0

-2

-1

0

1

2

f ' ' (0)
g' ' (0)
θ' (0)

- - -

Fig. 2   Combine �-curves at 20th order of approximation
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where ηj = j�η,�η = 0.5 and N = 20. The total discrete 
square residual error is defined as

Tables  1 and 2 represent the optimized values “h” 
against the Eqs. (28)–(29). It can observed via Table 1, for 
each iteration total error against each “h” is attaining the 
zero total error. However, in Table 2, it is further analyzing 
that error of each function approaches zero for increasing 
values of m.

(31)ET
m = Ef

m + Eg
m + Eθ

m,

(32)
∂ET

m

∂�f
= ∂ET

m

∂�g
= ∂ET

m

∂�θ
= 0.

3.3 � Numerical technique—Runge–Kutta Felburge 
method

Numerical approach has been proposed to validate the 
obtained optimized solutions through two different analyti-
cal techniques HAM and OHAM. For the system of cou-
pled differential Eqs.  (13)–(15) with boundary condition 
(16) and (17) are transformed into the initial value prob-
lem and then solved with the help of Runge–Kutta Felburge 
method. The size of each step is considered as �η = 0.01 
and the convergence criterion is fixed to 10−6. The con-
ditions defined in Eqs.  (16) and (17) were replaced by 
f (ηmax) = 1 using a value similarity variable ηmax = 12 . 
The choice of ηmax = 12 ensures that all numerical solu-
tions approach the asymptotic values correctly.

4 � Results and discussion

Before discussing the physical interpretation of the phe-
nomena, it is important to validate present study with the 
existing literature. For this purpose, we construct a compar-
ison in Table 3, in which numerical values have been com-
puted for Nusselt number as β → ∞. It is found that for 
Newtonian fluid our results exactly match with the study 
presented by Magyari and Keller [21] and Liu et al. [30]. 
In Table 4, we also present the comparison for skin friction 
coefficient for local Nusselt number with Liu et al. [30] for 
Newtonian fluid as β → ∞.

The graphical comparison between the analytical meth-
ods and numerical method is plotted in Fig. 3. Notice that, 
the comparisons are done by calculating the skin friction 
coefficients along x and y-direction, and local Nusselt 

Table 1   Total average square residual errors for 
α = 1

2
,β = 1

2
, Pr = 1,A = 2

m �f �g �θ ET
m

CPU time (s)

02 −0.37953 −0.35668 −0.65871 1.7624 × 10−4 5.91134

06 −0.39152 −0.36925 −0.57261 4.24968 × 10−7 102.569

10 −0.46459 0.450223 −0.43630 2.57296 × 10−9 1606.50

Table 2   Individual averaged square residual errors using optimal val-
ues at m = 10

m E
f
m E

g
m Eθ

m
CPU time(s)

02 2.04248 × 10−5 3.98235 × 10−5 6.66396 × 10−4 1.42008

06 9.62281 × 10−8 2.24392 × 10−8 1.29636 × 10−6 10.9556

10 7.14953 × 10−10 4.22651 × 10−10 1.43536 × 10−9 34.5765

20 2.99875 × 10−13 4.54657 × 10−13 1.18434 × 10−14 209.286

Table 3   Comparison of the 
variation of local Nusselt 
number for Newtonian fluid as 
β → ∞, at α = 0

Pr ↓ A ↓ Magyari and Keller [21] Liu et al. [30] Present study

R. K. Felburge HAM OHAM

1 −1.5 0.37741 0.37741256 0.377412 0.37745 0.37758

0 −0.549643 −0.54964375 −0.549646 −0.54969 −0.54961

1 −0.954782 −0.95478270 −0.954786 −0.95471 −0.95470

3 −1.560294 −1.56029540 −1.560295 −1.56026 −1.56024

5 −1.5 1.353240 1.35324050 1.3532405 1.35324 1.35328

0 −1.521243 −1.52123900 −1.521240 −1.52123 −1.52126

1 −2.500135 −2.50013157 −2.500135 −2.50017 −2.50049

3 −3.886555 −3.88655510 −3.886555 −3.88659 −3.88655

10 −1.5 2.200000 2.20002816 2.2000282 2.20004 2.20002

0 −2.257429 −2.25742372 −2.257424 −2.25747 −2.25747

1 −3.660379 −3.66037218 −3.660372 −3.66038 −3.66035

3 −5.635369 −5.62819631 −5.628196 −5.62817 −5.62815
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number against stretching ratio parameter α while rests of 
the emerging parameters are kept fixed. Excellent agree-
ment between the three methods is obtained.

To discuss the fluid flow behavior and heat transfer 
near the wall, we have plotted the skin friction coefficient 
along x, y-direction and local Nusselt number in Fig.  4. 
Comparison between the Newtonian fluid (β → ∞) and 

non-Newtonian fluid (β = 0.5, 1) are plotted. No doubt, 
non-Newtonian fluid has higher friction with the wall as 
compared to Newtonian fluid; these comparable results can 
be observed through Fig. 4a. Moreover, when α = 0, there 
is no contribution in the variation of skin friction along 
y-direction. At α = 0.5, variation in skin friction along 
x-direction provides a maximum contribution as compared 
to variation of skin friction along y-direction. Finally, at 
α = 1 for axisymmetric case, variation in skin friction 
along x and y direction are similar.

Effect of both stretching ratio parameter and Cas-
son fluid parameter for local Nusselt number are plot-
ted in Fig. 4a. It can be observed that with the increase in 
the stretching ratio parameter, the local Nusselt number 
increases. Moreover, dominant difference between heat 
transfer at the wall for both Newtonian and non-Newtonian 
can be observed through Fig.  4b. Simultaneous effects of 
Prandtl number and temperature exponent A = −0.5, 0 
and 2 for local Nusselt number are plotted in Fig. 4c. We 
observe a maximum influence to enhance the heat trans-
fer near the wall with the increase of Prandtl number is 
obtained at A = −0.5. Moreover, it is found that the case 
of two-dimensional Newtonian fluid has less heat transfer 

Table 4   Comparison of local 
Nusselt number for Newtonian 
case as β → ∞

α Pr A = −2 A = 0 A = 2

Liu et al. [30] Present study Liu et al. [30] Present study Liu et al. [30] Present study

0.0 0.7 0.6236183 0.62362 −0.4258380 −0.42584 −1.6416592 −1.64166

7.0 5.9409444 5.94093 −1.8466056 −1.84661 −5.8978037 −5.89780

0.5 0.7 0.7637845 0.76377 −0.5215410 −0.52154 −2.0106136 −2.01061

7.0 7.2761412 7.27614 −2.2616208 −2.26162 −7.2233049 −7.22331

1.0 0.7 0.8819431 0.88194 −0.6022235 −0.60222 −2.3216566 −2.32164

7.0 8.4017642 8.40175 −2.6114948 −2.61150 −8.3407540 −8.34075

α
0 0.25 0.5 0.75 1

0

0.5

1

1.5

2

2.5

Numerical
OHAM
HAM

-(1+1
/β)f''(

0)

-(1
+1
/β)
g''
(0
)

-θ'(0)

β=1,Pr=7, A=0.5

Fig. 3   Graphical comparison among three different techniques 
(numerical, HAM and OHAM) for skin friction confident and local 
Nusselt number

0.7 pt
α

0 0.25 0.5 0.75 1

0

0.5

1

1.5

2

2.5

3 β=0.5

β=1

β =∞

-(1+1/β)g''(0)

-(1+1/β)f ''(0)

Pr=7, A=0.5

(a) α
0 0.25 0.5 0.75 1

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

β = 0.5
β = 1.0
β =

-θ(0)

∞

(b) Pr

-θ
(0
)

25 50 75 100

0

15

30

45

60

75

90

∞

A=
-0
.5

A=0

A=2

α=0, β =

α=β=0.5

{
3-D, non-Newtonian fluid{
2-D, Newtonian fluid

(c)

Fig. 4   Distribution of skin friction and local Nusselt number for several values of physical parameters
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in the vicinity of the boundary as compared to the three-
dimensional non-Newtonian fluid. Similar effects can be 
seen for A = 0, but both two-dimensional Newtonian fluid 
and three-dimensional non-Newtonian fluid have same heat 
transfer rate with the wall for A = 2.

In Fig.  5, results for velocity and temperature profiles 
within the boundary layer are plotted against the emerging 
parameters. Variation of velocity along x and y directions 
with Casson fluid parameter β are plotted in Fig.  5a. We 
can observe that with the increase of non-Newtonian fluid 
parameter gives low velocity profile along both directions, 
while increasing effects can be observed in the case of tem-
perature profile with the increase in the value of Casson fluid 
parameter. Figure 5b, shows the variation of velocities along 
both (x and y directions) and temperature distribution with 
increasing values of stretching ratio parameter α. It is further 
observed that velocity along x-direction and temperature pro-
file ar decreasing as α increases. While increase in the vari-
ation of velocity along y-direction for various values of α. 
Figure 5c shows the effect of Prandtl number and tempera-
ture exponent on temperature profile. Both parameters give 
opposite effects on temperature profile, however, tempera-
ture exponent have dominant effects on temperature profile.

5 � Concluding remarks

In the whole analysis, we construct a complete physical 
model of a stretching sheet along the x and y-directions 
while fluid is containing along the z-direction. So the main 
key findings are summarized as follows:

1.	 Non-Newtonian fluid shows higher skin friction coef-
ficient as compared to Newtonian fluid. Moreover, the 

Nusselt number is more dominant for Newtonian fluid 
as compared to non-Newtonian fluids at different val-
ues of temperature exponents.

2.	 Velocity profile for both directions is decreasing with 
the increase in Casson fluid parameter, but temperature 
profile shows increasing behavior.

3.	 When stretching ratio is increased, both the velocity profile 
along x-direction and temperature profile are decreased. 
However, opposite behavior is observed for velocity pro-
file along y-direction when stretching ratio is increased.

4.	 Boundary layer is inversely proportional to Prandtl 
number. Therefore, as Prandtl number increases, the 
boundary layer thickness decreases which causes a 
temperature decrease.

5.	 Temperature exponent also plays vital role in heat 
transfer as seen. More precisely, as the temperature 
exponent increases then temperature inside the fluid 
increases.

6.	 The mathematical methods used to solve the present 
physical model shows excellent agreement with pre-
vious available studies, which confirms the validity of 
the present physical results.
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