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Macular edema (ME) and central serous retinopathy (CSR) are two macular diseases that affect the central vision
of a person if they are left untreated. Optical coherence tomography (OCT) imaging is the latest eye examination
technique that shows a cross-sectional region of the retinal layers and that can be used to detect many retinal
disorders in an early stage. Many researchers have done clinical studies on ME and CSR and reported significant
findings in macular OCT scans. However, this paper proposes an automated method for the classification of ME
and CSR from OCT images using a support vector machine (SVM) classifier. Five distinct features (three based on
the thickness profiles of the sub-retinal layers and two based on cyst fluids within the sub-retinal layers) are
extracted from 30 labeled images (10 ME, 10 CSR, and 10 healthy), and SVM is trained on these. We applied
our proposed algorithm on 90 time-domain OCT (TD-OCT) images (30 ME, 30 CSR, 30 healthy) of 73 patients.
Our algorithm correctly classified 88 out of 90 subjects with accuracy, sensitivity, and specificity of 97.77%,
100%, and 93.33%, respectively. © 2016 Optical Society of America

OCIS codes: (110.4500) Optical coherence tomography; (100.2960) Image analysis; (100.0100) Image processing; (170.4470)

Ophthalmology; (100.5010) Pattern recognition.

http://dx.doi.org/10.1364/JOSAA.33.000455

1. INTRODUCTION

The macula is an oval-shaped, highly pigmented dark spot at
the center of the retinal layer. It has a diameter of approximately
a quarter of an inch. The macula is responsible for the central
vision. Central vision is important for daily routine tasks such
as reading, driving, and writing. Near the center of the macula
is a tiny dip packed with light-sensitive cells called fovea. The
fovea pick up the finest details of central vision. Macular dis-
orders mainly damage the macular region of the retina, and can
greatly affect the central vision of a person. Unfortunately, in
developing countries such as Pakistan, the population ratio of
visually impaired people is increasing day by day due to the lack
of basic health infrastructure [1]. Globally, the major cause of
blindness is cataracts, followed by macular disorders [2]. There
are many types of macular disorders, but some common ones are
macular edema (ME), central serous retinopathy (CSR), macular
hole (MH), age-related macular degeneration (AMD), and the
Förster–Fuchs retinal spot. Most of these macular disorders
are curable if diagnosed at an early stage, but due to negligence
and lack of awareness, over 2 million people in Pakistan are

completely blind. Therefore, there is a dire need to create
an awareness of these diseases among the people and to facili-
tate ophthalmologists with accurate and efficient detection
methods.

In the case of ME, the retinal layers are swollen due to the
leakage of fluid from retinal blood vessels. There are two major
causes of ME. The first one is diabetes, where small blood
capillaries within the retina start leaking fluid. In this case,
ME is termed diabetic macular edema (DME). Eye (cataract)
surgery may also increase the risk of developing macular edema
due to irritated blood vessels and fluid leakage. In this case,
ME is termed cystoid macular edema (CME). CSR occurs
due to the accumulation of serous fluid beneath the retina
and causes the retinal layers to detach. There are two types
of CSR. In Type 1 CSR, the fluid accumulates under the neu-
rosensory retina [3]. Type II is characterized by the accumu-
lation of fluid in the retina due to retinal pigment epithelium
(RPE) leakage [3]. Serous fluid in such cases tends to be shal-
lower rather than domed shaped. Common symptoms of ME
and CSR are dim, blurred, and distorted central vision [4,5].
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Figure 1 shows the vision of a healthy person and a person
with ME/CSR.

Multiple retinal testing techniques are in practice nowadays,
including ophthalmoscopy, fundus photography, and fundus
fluorescein angiography. In addition to these, optical coherence
tomography (OCT) imaging is also being used for testing
retinal-disorder subjects. The OCT imaging technique works
on the principle of the Michelson-type interferometer in which
a beam splitter is used to split a low-coherence beam into two
waves. One beam is directed toward the subject’s eye and the
other toward the reference mirror, which is placed equidistant.
These waves are reflected back and are recombined to produce
an axial scan (A-scan), which is detected by the detector [6].
The foremost advantage that OCT imaging technology has
over other existing techniques is that symptoms of retinal dis-
eases such as CSR, ME, and pigment epithelial detachments
(PEDs) appear in the early stages in OCT images [7]. In
the case of an OCT scan that shows signs of ME and CSR,
the increased thickness between the inner limiting membrane
(ILM) and the choroid can be observed due to the fluid accu-
mulation between both layers, as shown in Fig. 2.

In the past, many researchers have done clinical studies on
ME and CSR using OCT images. Hannouche and Ávila [8] did
a comparison between various eye testing techniques. They ob-
served fundography, bio-microscopy, fluorescein angiography
(FA), and OCT imaging techniques for the detection of dia-
betic foveal edema and concluded that OCT imaging is more
sensitive to retinal changes than the rest of the techniques.
Shrestha et al. [9] figured out how the OCT imaging technique
can be more useful in aligning the macula after surgery in the
case of ME. They studied 60 subjects and concluded that OCT
is very effective in evaluating ME. Zhang et al. [10] presented
an overview of OCT imaging technology and how it can be
used in the treatment of DME. Ferrara et al. [11] characterized
features of the RPE layer and choroid of CSR-affected patients.
They included 15 eyes of 13 patients and concluded that the
OCT imaging technique enables the characterization of patho-
logic features of the RPE layer and choroid in patients with
CSR. Wani et al. [12] used OCT imaging and FA for the

diagnosis of CSR [12]. They studied 48 CSR-affected eyes
and concluded that OCT can be used as complementary tool
for the diagnosis of CSR. Teke et al. [13] discussed the com-
parison of fundus auto fluorescence (FAF) and OCT imaging
for CSR-affected patients. They evaluated 100 CSR cases and
concluded that both FAF and OCT imaging techniques can
support the clinicians in evaluating and diagnosing CSR [13].

Some researchers also worked on automated detection of
ME and PEDs using OCT images. Zhang et al. [14] did a
coarse segmentation of the intra-retinal layers for detection
of CME. They used AdaBoost in their research and obtained
an accuracy of 98.6%. Wilkins et al. [15] detected the fluid
between retinal layers by manually identifying the ILM and
RPE layer. They applied their algorithm to 16 patients and ob-
tained an average sensitivity of 91% and an average specificity
of 96%. Sugruk et al. [16] proposed a method for the detection
of AMD and DME. They removed the retinal nerve fiber layer
for RPE detection, and from the RPE abnormality, they de-
tected AMD. They also detected cysts bubbles for the detection
of DME. They obtained accuracies of 86.6% for DME and
100% for AMD. Sahar et al. [17] segmented the ILM and cho-
roid layer for the detection of DME and in healthy subjects
using the software development life cycle (SDLC) algorithm.
They achieved an accuracy, sensitivity, and specificity of 84%,
93%, and 80%, respectively. Srinivasan et al. [18] classified
AMD, DME, and healthy OCT images using histogram-
oriented descriptors as a feature vector that is computed from
an input B-scan. After that, the feature vector was passed to an
SVM for automated classification. Their accuracy for AMD,
DME, and healthy scans was 100%, 100%, and 86.67%, re-
spectively. Lee et al. [19] used spatial domain OCT (SD-OCT)
scans of 46 eyes with AMD and CSR to automatically classify
PEDs into three categories: serous, drusenoid, or fibrovascular.
They used the mean internal intensity and the standard de-
viation of the internal intensity to categorize PEDs and achieved
an overall accuracy of 89.2%. Cabrera Fernández et al. [20,21]
used a structure tensor approach combined with a nonlinear dif-
fusion process for automated detection of the retinal layers.
However, this paper proposes an automated method for the clas-
sification of macular edema and central serous retinopathy using
OCT scans. The remainder of the paper is organized as follows:
Section 2 explains the proposed methodology, while the results
are discussed in Section 3. Section 4 concludes the paper.

2. PROPOSED METHODOLOGY

We proposed an automated algorithm for the classification of
three retinal pathologies, as shown in Fig. 3. For correct clas-
sification, it is important to de-noise and enhance the input
OCT scan �IRGB�x; y��, which is done in the preprocessing
stage. After that, the ILM and choroid are segmented using
highly coherent two-dimensional (2D) structure tensors. To
obtain the tensors, we computed the dot product of the partial
derivatives of the images at 0 deg and 90 deg [22]. In addition
to this, the proposed algorithm automatically detects cyst fluid
segments that are present between inter-retinal layers. The
thickness vector �Tn�y�� is computed between the ILM and
choroid by measuring an absolute difference between both
layers for each A-scan. At last, a five-dimensional (5D) feature

Fig. 1. (a) Healthy person vision. (b) ME- and CSR-affected vision.

Fig. 2. OCT scan. (a) Healthy person OCT scan. (b) ME-affected
OCT scan. (c) CSR-affected OCT scan.
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set based on the thickness vector and cyst fluid is obtained. The
feature set is then passed to a supervised SVM classifier to clas-
sify the retinal OCT scans.

A. OCT Dataset

We acquired an OCT dataset from the Armed Forces Institute
of Ophthalmology (AFIO) in Rawalpindi. It consists of 90 time
domain OCT (TD-OCT) scans of 73 patients, out of which 54
were male and 19 were female. The median age of the patients
is 36.2 years. As shown in Table 1, 56 patients had unilateral
while 17 patients had bilateral disease. The total number of eyes
was 90 (30 healthy, 30 CSR, and 30 ME). The range of the
scanning parameters of all three retinal subjects is shown in
Table 1.

B. Preprocessing

The preprocessing stage is intended to improve the quality of
the OCT scan. First of all, an input OCT scan �IRGB�x; y�� is
resized to a common resolution of 480 × 1280 using MATLAB’s

built-in command imresize. Next, it is converted into a grayscale
OCT scan �IGRAY�x; y��. After that, different image enhance-
ment techniques, including contrast adjustment, image filtering,
and morphological operations, are carried out. The proposed
system also uses a 2D adaptive low-pass Wiener filter, which
estimates the local mean and variance within the neighborhood
of each pixel ID�xi; yj� of the candidate image as expressed in
Eqs. (1)–(3):

μ � 1

ωxωy

X
xi∈ωx

X
yj∈ωy

I�xi; yj�; (1)

σ2 � 1

ωxωy

X
xi∈ωx

X
yj∈ωy

I2�xi; yj� − μ2; (2)

ID�xi; yj� � μ� σ2 − v2

σ2
�I�xi; yj� − μ�; (3)

where ID�xi; yj� is the de-noised pixel, ωx are the row-wise ker-
nel pixels, ωy are the column-wise kernel pixels, μ is the local
estimated mean, σ2 is the local estimated variance, and v2 is the
average of all local estimated variances [23]. After enhance-
ment, the de-noised OCT image ID�x; y� is converted into a
binary image IB�x; y� for further processing, as shown in Fig. 4.
C. ILM and Choroid Segmentation

To accurately segment the ILM and choroid layers from the de-
noised OCT scan ID�x; y�, we obtained 2D structure tensors
by taking the dot product of the partial derivatives of the images
at 0 deg and 90 deg with a Gaussian window win�x; y�. In the
past, some researchers also used the same approach for the seg-
mentation of the sub-retinal layers. Cabrera Fernández et al.
[20,21] used a structure tensor approach combined with a non-
linear diffusion process for the automated detection of the reti-
nal layers. A structure tensor is a second-moment matrix that
shows the similarities and prominent orientations of image gra-
dients within the pixel neighborhood. The 2D discrete struc-
ture tensor is illustrated by Eqs. (4)–(7):

Jw�x; y� �
� �IX �x; y��2 IX �x; y�IY �x; y�
IY �x; y�IX �x; y� �IY �x; y��2

�
; (4)

Fig. 3. Proposed system. (a) Candidate OCT scan. (b) Prepro-
cessing stage to obtain de-noised image �ID�x; y��. (c) ILM (red) and
choroid (green) layers segmentation using highly coherent 2D struc-
ture tensors. (d) Thickness vector �Tn�y�� computation and three fea-
tures (f 1, f 2, f 3) extraction from it, and cyst fluid detection and two
features (f 4, f 5) extraction from it. (e) Feature vector passed to SVM
for classification. (f ) Classification stage based on feature vector and
training datasets.

Table 1. Scanning Parameters of Dataset

Type

Scanning Parameters Healthy CSR ME

Total subjects 30 30 30
Axial resolution (μm) 3–3.8 3–3.8 3–3.8
Lateral resolution (μm) 11–13 7–13 11–13
Azimuthal resolution
(μm)

49–122 58–129 63–186

Scan Resolution (pixel
x pixel)

480 × 1280 480 × 1280 480 × 1280

B-scans 128 115–134 117–126
A-scans (points) 1280

points
1280
points

1280
points

Fig. 4. Preprocessing stage. (a) Input OCT scan �IRGB�x; y��.
(b) Grayscale OCT scan �IGRAY�x; y��. (c) De-noised image
�ID�x; y��. (d) Binary image �IB�x; y��.
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�IX �x; y��2 �
X
xi∈wx

X
yj∈wj

win�xi; yj�I ρX ; (5)

IX �x; y�I y�x; y� � IY �x; y�IX �x; y�
�

X
xi∈wx

X
yj∈wj

win�xi; yj�I ρXY ; (6)

�IY �x; y��2 �
X
xi∈wx

X
yj∈wj

win�xi; yj�I ρY ; (7)

where Jw�x; y� is a structure tensor matrix of dimensions 2 × 2.
�IX �x; y��2 is the horizontally oriented tensor, �IX �x; y�
I y�x; y�� and �IY �x; y�IX �x; y�� are horizontally and vertically
oriented tensors, and �IY �x; y��2 is the vertically oriented ten-
sor, modeled using the radiative transfer equation or its diffu-
sion approximation [24]. I ρY , I ρXY , and I ρX are the partial
derivatives of the de-noised image within the pixel neighbor-
hood as expressed by Eqs. (8)–(10). win�x; y� is the Gaussian
window, and ID�x; y� is the de-noised OCT scan. These four
tensors are shown in Fig. 5:

I ρY �
�∂ID�x − xi; y − yj�

∂y

�
2

; (8)

I ρXY �
�∂ID�x − xi; y − yj�

∂x

��∂ID�x − xi; y − yj�
∂y

�
; (9)

IρX �
�∂ID�x − xi; y − yj�

∂x

�
2

: (10)

The relative difference between the two eigenvalues indi-
cates the degree of anisotropy of the gradient in the
Gaussian window win�x; y�. This quantity is termed the “coher-
ence” and is expressed by Eq. (11):

Cw �
�
λ1 − λ2
λ1 � λ2

�
: (11)

where “λ1” and “λ2” are the eigenvalues for the horizontal and
vertical orientations within win�x; y�, respectively. The value of
coherence (Cw) determines the orientation alignment within
the window. Cw � 1 corresponds to the maximally aligned

orientation (Cw � −1 indicates alignment in the opposite
direction), and if Cw � 0, then there is no predominant
orientation [24].

Out of these four tensors, a highly coherent tensor IC �x; y�
is extracted, and is then converted into a binary coherent
tensor IB 0 �x; y� by finding the optimal threshold using the
Otsu algorithm [25]. At last, from IB 0 �x; y�, the ILM and
choroid are segmented using canny edge detection [26], as
shown in Fig. 6.

D. Features Extraction

From the segmented ILM and choroid, we extracted a thickness
profile by computing the absolute difference between both
layers. We have also detected the cyst fluid between the sub-
retinal layers using these segmented layers.

1. Thickness Profile Extraction

After segmenting the sub-retinal pathology from IB 0 �x; y�, the
thickness vector Tn�y� is computed from the ILM and choroid
by measuring the absolute difference between both layers for
each A-scan as illustrated by Eqs. (12) and (13):

Tn�y� � �Tn�y1�; T n�y2�;…; T n�yi��; (12)

where

Tn�yi� � �jI ILMi
�x; y� − IChorosi �x; y�j�: (13)

“i” is the number of A-scans present in one B-scan. Figure 7
shows the B-scan of a CSR-affected case, and Fig. 8 shows the
thickness profile plot of respective B-scan.

2. Cyst Fluid Detection

Along with extracting the B-scan thickness profile, we have also
detected the cyst segments within the sub-retinal pathology.
After extracting the ILM and choroid from the coherent tensor,
a sub-retinal mask IMask�x; y� is created between both layers.
Figure 9 shows the cyst segment extracted by performing an
exclusive OR (XOR) operation between the sub-retinal mask
and de-noised binary image as expressed in Eq. (14):

ICyst�x; y� � IMask�x; y�⊕ IB�x; y�: (14)

Fig. 5. 2D structure tensors of ID�x; y�: (a) horizontally oriented
gradients tensor ���IX �x; y��2�. (b), (c) Vertically and horizontally ori-
ented gradients tensors, and (d) vertically oriented gradients tensor
��IY �x; y��2�.

Fig. 6. ILM and choroid layer segmentation: (a) highly coherent
tensor �IC �x; y��. (b) Binary map IB 0 �x; y� of highly coherent tensor.
(c) Canny edge detection of sub-retinal and choroid layers.
(d) Segmented ILM (red) and choroid (green) layer.
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In order to distinguish between ME and CSR subjects, the
proposed method computes the one-level wavelet decomposi-
tion of the cyst thickness profile, as shown in Fig. 10. Then, the
cyst energy from the low band is calculated to discriminate be-
tween the ME and CSR cases. The value of this cyst energy is
much less in case of CSR subjects as compared to ME subjects,
as shown in Fig. 11.

E. Feature Set Formulation

To automatically distinguish between healthy, ME, and CSR
OCT scans, we extracted five distinct features from all retinal
images to form the feature vector (f � ff 1; f 2; f 3; f 4; f 5g).
Three features are obtained from the thickness profiles of the
ILM and choroid, and two are obtained from the cyst fluid
present within the sub-retinal layers. The explanation of each

feature to distinguish between all three retinal pathologies is as
follows:

Max Thickness �f 1�: The maximum value in the thickness
vector Tn�y�, which is due to the maximum gap between the
ILM and choroid, as expressed by Eqs. (15) and (16):

f 1 � max�Tn�y��; (15)

f 1 � max�jI ILM�x; y� − IChoroid�x; y�j�: (16)

Min Thickness �f 2�: The minimum value in the thickness
vector Tn�y�, which is due to the minimum gap between the
ILM and choroid layer, as expressed by Eqs. (17) and (18):

f 2 � min�Tn�y��; (17)

f 2 � min�jI ILM�x; y� − IChoroid�x; y�j�: (18)

Thickness Variation �f 3�: The difference between f 2 and f 1

as expressed by Eq. (19). It tells about the variation between the
layers due to the presence of cyst fluid between the sub-retinal
layers:

f 3 � f 2 − f 1: (19)

Maximum Cyst Area �f 4�: The maximum cyst area deter-
mines the total area occupied by the leaked fluid within sub-
retinal layers. It is computed by taking the area of ICyst�x; y�, as
expressed by Eq. (20):

f 4 � Area�ICyst�x; y��: (20)

Cyst Energy �f 5�: The total energy of a cyst segment calcu-
lated by Eq. (21):

Fig. 8. (a) Segmented ILM and choroid layers. (b) Thickness plot
between ILM and choroid layers.

Fig. 9. Cyst fluid detection: (a) mask between ILM and choroid
layer �IMask�x; y��. (b) Binary de-noised image �IB�x; y��.
(c) XORed image of (a) and (b). (d) Cyst fluid mapped on ID�x; y�.

Fig. 10. One-level wavelet decomposition to calculate cyst energy.

Fig. 11. Cyst energy: (a) CSR case and (b) ME case.

Fig. 7. B-scan of CSR-affected subject with A-scan after every 10
A-scans. ILM (red) and choroid (green) layers depicted on de-noised
image �ID�x; y��.
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f 5 � jLow band�DWT�ICyst�x; y���j2: (21)

Table 2 shows the feature vectors of five randomly selected
images from our local dataset. From Table 2, it can be seen
that in the cases of ME and CSR, all five features deviated much
more as compared to the healthy case. This is due to excessive
fluid accumulation across the B-scan in the case of ME- and
CSR-affected subjects.

F. Classification

1. Classifier Training

The SVM is being used in our proposed system to distinguish
between ME, CSR, and healthy OCT scans. After extracting
five distinct features from an OCT image, a 5D feature vector
f � ff 1; f 2; f 3; f 4; f 5g is obtained. It is then passed to the
supervised classifier to make a decision based on the thickness
profiles and cyst fluid present within the sub-retinal layers.
SVM is among the fastest and most popular supervised classi-
fiers [27] that have a linear hyperplane by default for classifi-
cation. However, it is implemented as a nonlinear hyperplane
using the multilayer perceptron kernel and Gaussian radial
basis function in the proposed system. The training phase of
the classifier is shown in Fig. 12.

We used a total of 30 labeled OCT images (10 ME, 10
CSR, and 10 healthy) annotated by an expert ophthalmologist
to train the SVM. For each of the 30 labeled images, five dis-
tinct features are computed to form a 5D feature set (f �
ff 1; f 2; f 3; f 4; f 5g). f 1; f 2, and f 3 are based on the thick-
ness vector T �y�, which is calculated by taking the absolute
difference between the ILM and choroid, whereas f 4 and f 5

are obtained from cyst fluid within the sub-retinal layers. After
that, the feature set “f ” is passed to the SVM. The performance
of the SVM is measured by performing “K-fold” cross valida-
tion for different values of “K,” as shown in Table 3.

2. Classification of Retinal Pathologies

Once the classifier was trained, it was used to classify unlabeled
candidate images on the basis of the feature vector �f �
f �f 1; f 2; f 3; f 4; f 5��, which is computed in the similar
manner as discussed in the feature extraction section of the pro-
posed system. We used two supervised SVMs. The first SVM
classifier distinguishes between the healthy and diseased OCT
scans based on four features �f 1; f 2; f 3; f 4�. If the processed
OCT scan is labeled as “diseased,” then it is further classified as
ME or CSR by the second SVM. The decision between ME
and CSR is based on two features �f 4; f 5�. A flowchart of the
classification algorithm is shown in Fig. 13.

We have also measured the performance of our proposed
system on the local (AFIO) dataset by computing sensitivity,
specificity, and accuracy using Eqs. (22)–(24):

Accuracy � TP� TN

TP� TN� FP� FN
; (22)

Sensitivity � TP

TP� FN
; (23)

Table 2. Range of Features Extracted

Features

Type Cases
F1

(mm)
F2

(mm)
F3

(mm)
F4

�mm2� F5

Healthy Case 1 36.51 11.38 25.14 124.27 1165.2
Case 2 39.69 23.02 16.67 140.28 1328.8
Case 3 34.13 19.58 14.55 0 0
Case 4 50.54 32.54 17.99 126.71 1124.1
Case 5 38.36 18.26 20.11 174.34 983.24
Mean
(all)

40.01 21.94 18.07 117.43 1087.2

S.D 6 5.86 5.31 67.18 94.27
CSR Case 1 64.29 38.1 26.19 11827.1 10417

Case 2 82.02 42.33 39.69 20981.4 8570.6
Case 3 68.79 34.66 34.13 22936.9 12061
Case 4 63.5 43.39 20.11 8724.1 12940
Case 5 71.7 35.98 35.72 26443.2 13051
Mean
(all)

59.74 32.03 27.71 13430.4 12416

S.D 9.51 7.21 7.83 8529.76 726.21
ME Case 1 72.23 36.25 35.98 7023.88 56835

Case 2 48.42 25.66 22.75 18400.9 32093
Case 3 49.48 21.96 27.52 14619.3 23180
Case 4 62.18 33.07 29.1 27120.8 27419
Case 5 65.62 39.42 26.19 3201.17 25871
Mean
(all)

54.64 39.17 24.28 15194.3 28148

S.D 8.77 11.2 8.45 8751.7 60873

Fig. 12. Training phase of SVM.

Table 3. Classifier Cross-Validation Performance

K Max Accuracy

2 94.2%
4 95.7%
8 96.8%
10 98%
12 97.4%
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Specificity � TN

TN� FP
; (24)

where “TP” is true positive, “TN” is true negative, “FP” is false
positive, and “FN” is false negative.

3. RESULTS

We have applied the proposed algorithm to our local dataset
acquired from the AFIO in Rawalpindi. All images are acquired
using TOPCON’s 3D OCT-1000 camera. The dataset con-
tains 90 OCT images, out of which 30 are of ME-affected eyes,
30 are of CSR-affected eyes, and 30 are of healthy eyes. The
proposed system correctly classified 88/90 subjects, which were
also confirmed by an expert ophthalmologist. Table 4 shows
the results obtained for all three cases.

Apart from this, Fig. 14 shows some of the randomly se-
lected unlabeled OCT images of all three cases that are correctly
classified by our proposed system. The segmented ILM and
choroid are shown in red and purple, respectively, whereas
the cyst fluid is indicated by cyan.

We have also compared the performance of the SVM with
other known supervised classifiers that were used in the liter-
ature. The comparison is shown in Table 5.

4. DISCUSSION

We proposed a fully automated algorithm to distinguish be-
tween three retinal pathologies using OCT images on the basis
of a 5D feature vector of the candidate image. The proposed
method is very robust and insensitive to speckle noise.

Although we also extracted sub-retinal layers, as shown in
Fig. 15, rather than relying on the correct segmentation of sub-
retinal layers in extreme CSR cases, the proposed method is
based on analyzing the thickness variation and cyst fluid within
a B-scan of the candidate image.

Our proposed algorithm is based on five distinct features to
classify three different sub-retinal pathologies. Features f 1; f 2,
and f 3 are based on the sub-retinal thickness profiles, while f 4

and f 5 are based on sub-retinal cysts. We have computed f 1;
f 2, and f 3 because they can give a good variation of sub-retinal
thickness in healthy and CSR and ME scans. Also, healthy
OCT scans do not have cyst spaces as compared to CSR and
ME scans; this explains why we have a significant difference in
f 4 between healthy and CSR and ME scans. f 1; f 2, and f 3

support f 4. However, f 1; f 2; f 3, and f 4 alone are not enough
to discriminate between ME and CSR scans, as shown in
Table 2. So in order to make the discrimination, we have com-
puted the cyst energy f 5 because ME cysts contain more en-
ergy as compared to CSR cysts “f 5,” as shown in Fig. 11 and
also in Table 2. We have tested our algorithm on different can-
didate images from our local dataset that we obtained from the
AFIO. Previously, we also tested our proposed algorithm on a
Duke Dataset in [28] to classify ME and healthy cases, but
unfortunately, we could not find any online dataset for CSR.
The proposed method is quite fast and accurate in detecting
small thickness variations and cyst fluid bubbles within sub-
retinal layers. The approximate average time for classification
is 8 s using a core i7 (1.8 GHz) fourth-generation laptop with
8 GB RAM. Moreover, our algorithm does not depend on the

Fig. 13. Flowchart of classification algorithm.

Table 4. Results Achieved

Type
Correctly
Classified Accuracy Sensitivity Specificity

Healthy 28/30 97.77% 100% 93.33%
CSR 30/30
ME 30/30

Fig. 14. Unlabeled dataset: (a) classified as ME, (b) classified as
healthy, and (c) classified as CSR.

Table 5. Classifier Performance Comparison

Authors Diseases Dataset Accuracy Sensitivity Specificity
Proposed 3 90 97.77% 100% 93.33%

[15] 2 16 – 91% 96%
[16] 3 16 87.5% – –
[17] 2 550 84% 93 80
[18] 3 45 95.5 100 93.75

Research Article Vol. 33, No. 4 / April 2016 / Journal of the Optical Society of America A 461



retinal curvature and is also rotation invariant. We have also
tuned our proposed system to correctly classify all the CSR
and ME subjects while compromising a bit on healthy subjects.
Apart from this, there were also some noisy images in our local
dataset, as shown in Fig. 16.

The proposed technique can act as an aid to an ophthal-
mologist. A machine can automatically segment out layers, and
doctors can use the numbers to back their diagnosis. Usually, a
diagnosis is subjective; such hard, quantitative facts can help
standardize treatment methodologies worldwide.

Different retinal pathologies have different symptoms in
OCT scans. In the future, this work can be extended for the
automated detection of other retinal pathologies in a similar
way by extracting some more distinct features. It can also be
used for grading of ME into clinically significant macular
edema (CSME) and non-CSME and grading of CSR into
Type 1 and Type 2 CSR.

5. CONCLUSION

A fully automated method for the classification of macular
edema, central serous retinopathy, and healthy OCT images
has been proposed. Our algorithm relies on the ILM and
choroid, extracted from the highly coherent 2D tensor of the
candidate image. An SVM supervised classifier is used for clas-
sification. We tested our proposed system on the local dataset
acquired from the AFIO. There were a total of 90 OCT images,
out of which 60 were ME and CSR patients and 30 were
healthy persons. Our algorithm correctly classified 88 out of
90 subjects.

Moreover, our algorithm is quite fast and achieved accept-
able classifier ratings. In the future, this work can be extended
for classifying other retinal diseases such as, tractional retinal
detachment, MH, PEDs, and choroidal neovascularization.
Our proposed algorithm can also be extended for the grading
of these retinal diseases. It can also be used to detect ocular dis-
orders such as glaucoma by measuring the thickness level be-
tween the ILM and RPE from circular optic nerve head scans.
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