# **2-D Seismic Interpretation & Structural Analysis of Toba Tak Singh, Central Indus Basin, Pakistan**



# NAVEED GUL

# 01-161062-031

# Department of Earth & Environmental Sciences Bahria University Islamabad

## **DEDICATION**

I humbly dedicate my work to my uncle Mr. Ishtiaq Hussain Jadoon to whom I owe my existence, whose unconditional love, impeccable struggle, overwhelming generosity and perseverance had been a constant support throughout the flamboyant and distress moments of my life and without whom I would not have been able to counter the blues of life and tackle him optimistically. Therefore I dedicate my work to him as an attempt to pay him homage.

### **ACKNOWLEDGMENT**

To start off, First of all I would like to thank ALLAH Almighty who gave me the blessings to successfully finish my thesis. All that I have accomplished so far could not have been possible without the support of my family who provided me with all the facilities I demanded for. I solemnly regard and grateful to my co-supervisor Mrs. Urooj Muyyassar and supervisor Mr. Muyyassar Hussain for all their assistance, guidance and exalt during my thesis in time. Their inspiring suggestions, synergistic attitude, motivation, encouragement and constructive criticism was hallmark of their ceiling professionalism which in turn enhanced our knowledge remarkably.

Moreover, I also thanks to honor the gratitude of all the faculty present at Bahria University particularly **Dr. Muhammad Zafar**, Head of Department (E & ES) for being facilitating us in every aspect during my thesis. I am convincingly influenced by the faculty for keeping us updated with latest innovations in industry which is not only helpful for us in starting the professional career confidently but also developed a true professional altitude in us.

Additionally, we profoundly regard Directorate General of Petroleum Concession (DGPC) for their well being and favor they provided us in getting the desired data for our research project. I also deeply thankful to Land Mark Resources (LMKR) for releasing the data to us.

I am truly enthralled by the motivating, amiable and earnest attitude of my parents as well as my siblings for standing beside me every time I needed a support.

I am cordially grateful to my classmates and friends for their kind assistance in my thesis work.

### **ABSTRACT**

The present study pertains to the modeling of the productive zones from seismic data. This was carried out by using seismic lines, 875-TTS-215, 875-TTS-216, and 875-TTS-218 of Toba Tek Singh provided by the Directorate General of Petroleum Concession. The area is important for its hydrocarbon Oil structural traps. The Toba Tek Singh field was acquired by OGDCL. The area lies in the Middle Indus basin and the reservoir encountered during the study of this field is Samana Suk Formations.

Toba Tek Singh is spread over an area of 3252 square kilometres comprising of three tehsils Toba Tak Singh, Gojra and Kamalia .Toba Tek Singh field is located between 30°33"20' to 31°2"0' North latitudes and 72°08"20' to 72°48"0' longitudes. The field was discovered by OGDCL as the first (and so far only) of Punjab platform.

The basic objective of the study is to get preliminary understanding and now how of the subsurface structures trend and stratigraphy of the cited area. Seismic interpretation eventually resulted in outcomes as time and depth contour maps, which assisted to understand the subsurface structures for further exploration.

During the study of Seismic sections first of all I pick two prominent reflectors from the seismic sections. The interpretation of present study two reflectors are marked at different time R1 (Samana Suk Formation) and where as R2 (Salt Range Formation) was marked then note the time of each reflector against the shotpoints. Moreover I have done the preparation of time and depth contour map of Samana Suk formation on the base map. Formula used for the conversion of time into depth is given below:

 $S = V^*T/2$ 

## **CONTENTS**

### CHAPTERS

PAGES

#### 1. INTRODUCTION

| 1.1 | GENERAL INTRODUCTION               | 1 |
|-----|------------------------------------|---|
| 1.2 | INTRODUCTION OF THE STUDY AREA     | 3 |
| 1.3 | CLIMATE                            | 4 |
| 1.4 | OBJECTIVES AND METHODOLOGY ADOPTED | 4 |

### 2. GEOLOGY OF THE AREA

| 2.1 | REGIO | NAL GEOL   | OGICAL SETTING                   | 7  |
|-----|-------|------------|----------------------------------|----|
| 2.2 | CENT  | RAL INDUS  | BASIN (Study Area)               | 9  |
|     | 2.2.1 | INTRODU    | JCTION                           | 9  |
|     | 2.2.2 | GEOLOG     | ICAL SETUP OF MIDDLE INDUS BASIN | 9  |
| 2.3 | STRAT | FIGRAPHY ( | OF MIDDLE INDUS BASIN            | 12 |
|     | 2.3.1 | GENERAI    | L STRATIGRAPHY OF BASIN          | 12 |
| 2.4 | STRAT | FIGRAPHY ( | OF THE STUDY AREA                | 13 |
|     | 2.4.1 | PRECAM     | BRIAN STRATIGRAPHIC SEQUNECE     | 14 |
|     |       | 2.4.1.1    | SALT RANGE FORMATION             | 14 |
|     | 2.4.2 | CAMBRIA    | AN STRATIGRAPHIC SEQUNECE        | 14 |
|     |       | 2.4.2.1    | KHEWRA SANDSTONE                 | 14 |
|     |       | 2.4.2.2    | KUSSAK FORMATION                 | 15 |

|       | 2.4.2.3   | JUTANA FORMATION         | 15 |
|-------|-----------|--------------------------|----|
|       | 2.4.2.4   | BAGHANWALA FORMATION     | 15 |
| 2.4.3 | PERMIAN   | STRATIGRAPHIC SEQUENCE   | 16 |
|       | 2.4.3.1   | TOBRA FORMATION          | 16 |
|       | 2.4.3.2   | DANDOT FORMATION         | 16 |
|       | 2.4.3.3   | WARCHA SANDSTONE         | 16 |
|       | 2.4.3.4   | SARDAHI FORMATION        | 16 |
|       | 2.4.3.5   | AMB FORMATION            | 17 |
|       | 2.4.3.6   | WARGAL LIMESTONE         | 17 |
|       | 2.4.3.7   | CHHIDRU FORMATION        | 17 |
| 2.4.4 | TRIASSIC  | STRATIGRAPHIC SEQUENCE   | 18 |
|       | 2.4.4.1   | MIANWALI FORMATION       | 18 |
|       | 2.4.4.2   | TREDIAN FORMATION        | 18 |
|       | 2.4.4.3   | KINGRIALI FORMATION      | 18 |
|       | 2.4.4.4   | WULGAI FORMATION         | 18 |
| 2.4.5 | JURASSIC  | STRATIGRAPHIC SEQUENCE   | 19 |
|       | 2.4.5.1   | SHIRINAB FORMATION       | 19 |
|       | 2.4.5.2   | CHILTAN LIMESTONE        | 19 |
|       | 2.4.5.3   | DATTA FORMATION          | 20 |
|       | 2.4.5.4   | SHINWARI FORMATION       | 20 |
|       | 2.4.5.5   | SAMANA SUK FORMATION     | 20 |
|       |           |                          |    |
| PETRO | LEUM SYST | EM OF MIDDLE INDUS BASIN | 20 |
| 2.5.1 | SOURCE R  | OCKS                     | 21 |
|       |           |                          |    |

| 2.5.2 | RESERVOIR ROCKS | : | 22 |
|-------|-----------------|---|----|
| 2.5.3 | SEAL ROCKS      |   | 22 |

2.5

| 2.5.4 | TRAPPING                | MECHANISM              |                   |          |            | 23 |
|-------|-------------------------|------------------------|-------------------|----------|------------|----|
| 2.5.5 | PLAY ELEN<br>OF THE STU | MENTS AND<br>JDY AREA  | RESERVIOR         | CHARA    | CTERISTICS | 24 |
|       | 2.5.5.1                 | RESERVIOR<br>SUK FORMA | CHARACTER<br>TION | ISTICS C | OF SAMANA  | 24 |

## 3. SEISMIC DATA ACQUISITION AND PROCESSING

| 3.1 | INTRO | DUCTION | N         |                                 | 25 |
|-----|-------|---------|-----------|---------------------------------|----|
|     | 3.1.1 | SEISMI  | C DATA A  | CQUISITION                      | 25 |
|     |       | 3.1.1.1 | TYPE      | S OF SEISMIC DATA               | 27 |
|     |       |         | 3.1.1.1.1 | SEISMIC REFRACTION METHOD       | 27 |
|     |       |         | 3.1.1.1.2 | SEISMIC REFLECTION METHOD       | 29 |
|     |       | 3.1.1.2 | INSTI     | RUMENTS USED                    | 30 |
|     |       | 3.1.1.3 | SPRE      | AD GEOMETERY                    | 31 |
|     | 3.1.2 | SEISMI  | C DATA PI | ROCESSING                       | 31 |
|     |       | 3.1.2.1 | OBJE      | CTIVES                          | 31 |
|     |       | 3.1.2.2 | STEP      | S INVOLVED                      | 32 |
|     |       | 3.1.2.3 | PRO       | CESSING PARAMETERS USED IN AREA | 33 |
|     |       |         |           |                                 |    |

### 4. SEISMIC DATA INTERPRETATION.

| 4.1 | INRODUCTION                       | 36 |
|-----|-----------------------------------|----|
| 4.2 | STRUCTURAL ANALYSIS               | 37 |
| 4.3 | STRATIGRAPHIC ANALYSIS            | 37 |
| 4.4 | METHOD OF PREPARING DEPTH SECTION | 38 |
| 4.5 | INTERPRETATION PLAN               | 38 |

|       | 4.5.1      | INTERPRETER'S OBJECTIVES                   | 39 |  |
|-------|------------|--------------------------------------------|----|--|
| 4.6   | INTERI     | PRETATION PROCESSES                        | 39 |  |
| 4.7   | BASE N     | ЛАР                                        | 41 |  |
| 4.8   | REFLE      | CTOR IDENTIFICATION                        | 43 |  |
| 4.9   | FAULT      | S IDENTIFICATION                           | 43 |  |
| 4.10  | INTERI     | PRETATION OF GIVEN SEISMIC SECTIONS        | 44 |  |
|       | 4.10.1     | INTERPRETATION OF SEISMIC LINE 875-TTS-215 | 45 |  |
|       | 4.10.2     | INTERPRETATION OF SEISMIC LINE 875-TTS-216 | 46 |  |
|       | 4.10.3     | INTERPRETATION OF SEISMIC LINE 875-TTS-218 | 47 |  |
| 4.11  | TIME S     | ECTIONS                                    | 48 |  |
| 4.12  | DEPTH      | SECTIONS                                   | 50 |  |
| 4.13  | ESTIM      | ATION OF SEISMIC VELOCITIES                | 52 |  |
|       | 4.13.1     | MEAN AVERAGE VELOCITY LINE METHOD          | 52 |  |
|       | 4.13.2     | DIX AVERAGE CONTOUR MAP METHOD             | 54 |  |
| 4.14  | ISO VE     | LOCITY GRAPHS                              | 55 |  |
| 4.15  | TIME C     | CONTOUR MAPS                               | 57 |  |
| 4.16  | DEPTH      | CONTOUR MAPS                               | 60 |  |
| 4.17  | VELOC      | ITY CONTOUR MAPS                           | 63 |  |
|       |            |                                            |    |  |
| CONC  | LUSION     | S                                          | 65 |  |
| RECO  | MMEND      | DATIONS                                    | 66 |  |
| REFEI | REFERENCES |                                            |    |  |

## **LIST OF FIGURES**

| FIGURES     | FIGURES EXPLANATION                                                                                                 | PAGES |
|-------------|---------------------------------------------------------------------------------------------------------------------|-------|
| Figure 1.1  | Location of Study Area (Toba Tek Singh) adopted from map.google_earth                                               | 3     |
| Figure 1.2  | Base map of the Study Area                                                                                          | 5     |
| Figure 2.1  | Regional Geological Setting (after Shah 1980)                                                                       | 8     |
| Figure 2.2  | Basin Architecture of Pakistan (after Abul Farah et al, 1984)                                                       | 11    |
| Figure 2.3  | Generalized Stratigraphic Column of Central Indus Basin (after R. A. Sheikh, 2003)                                  | 13    |
| Figure 2.4  | Generalized diagram of Petroleum play types of Central Indus Basin Pakistan<br>(Pakistan Hydrocarbon Habitat, 1988) | 21    |
| Figure 2.5  | General Petroleum Geology of Central Indus Basin (Raza & Ahmed, 1990)                                               | 23    |
| Figure 2.6  | Description of Toba Tek Singh Field                                                                                 | 24    |
| Figure 3.1  | Seismic Refraction Energy                                                                                           | 28    |
| Figure 3.2  | Seismic Reflection Energy                                                                                           | 29    |
| Figure 3.3  | Block Diagram Showing the various stages of Seismic Processing                                                      | 33    |
| Figure 4.1  | Base Map of the Study Area                                                                                          | 42    |
| Figure 4.2  | Interpreted Seismic Time Section of Line 875-TTS-215                                                                | 45    |
| Figure 4.3  | Interpreted Seismic Time Section of Line 875-TTS-216                                                                | 46    |
| Figure 4.4  | Interpreted Seismic Time Section of Line 875-TTS-217                                                                | 47    |
| Figure 4.5  | Time Section of Seismic Line 875-TTS-215                                                                            | 48    |
| Figure 4.6  | Time Section of Seismic Line 875-TTS-216                                                                            | 49    |
| Figure 4.7  | Time Section of Seismic Line 875-TTS-218                                                                            | 49    |
| Figure 4.8  | Depth Section of Seismic Line 875-TTS-215                                                                           | 50    |
| Figure 4.9  | Depth Section of Seismic Line 875-TTS-216                                                                           | 51    |
| Figure 4.10 | Depth Section of Seismic Line 875-TTS-218                                                                           | 51    |

| Figure 4.11 | Average Velocity Curve of Line 875-TTS-215                   | 53 |
|-------------|--------------------------------------------------------------|----|
| Figure 4.12 | Average Velocity Curve of Line 875-TTS-216                   | 53 |
| Figure 4.13 | Average Velocity Curve of Line 875-TTS-218                   | 54 |
| Figure 4.14 | Iso Velocity Graphs of Line 875-TTS-215                      | 55 |
| Figure 4.15 | Iso Velocity Graphs of Line 875-TTS-216                      | 56 |
| Figure 4.16 | Iso Velocity Graphs of Line 875-TTS-218                      | 56 |
| Figure 4.17 | Time Contour Map of Samana Suk Formation on the Base map     | 58 |
| Figure 4.18 | Time Contour Map of Salt Range Formation on the Base map     | 59 |
| Figure 4.20 | Depth Contour Map of Samana Suk Formation on the Base map    | 61 |
| Figure 4.21 | Depth Contour Map of Salt Range Formation on the Base map    | 62 |
| Figure 4.22 | Velocity Contour Map of Samana Suk Formation on the Base map | 63 |
| Figure 4.23 | Velocity Contour Map of Salt Range Formation on the Base map | 64 |