Simulation of 8-bit Microprocessor (Arithmetic Logic Unit)

Developed By Shehla Noor (992CS118)

Supervised by Mr. Jehanzeb Ahmad

Department of Computer Sciences

Bahria Institute of Management & Computer Science, Islamabad University Of Peshawar, Peshawar

ABSTRACT

From the modest beginning in early 1984 at Gateway Design Automation, the Verilog hardware description language has become an industry standard as a result of extensive use in the design of integrated circuit chips and digital systems. Verilog came into being as a proprietary language supported by a simulation environment that was the first support milded-level design representations comprising switches, gates, RTL, and high levels of abstractions of digital circuits.

This project is my first experience of digital designing. This is an accumulator-based microprocessor. First, the detailed architecture was designed, and then depending on that architecture Verilog coding was done. Although Memory based Microprocessors are better than Accumulator based, but as I was totally new to Digital Designs in Verilog, I preferred Accumulator based. It can support 11 instruction of ALU, 3 instructions of AGU and 3 instruction pipeline stages. All the instructions were tested and waveforms were generated.

The report discusses all the phases of project.

Author,

Shehla Noor

CONTENTS

1	In	troduction		1
1.1	1	Introduction to HDL		2
1.2	2	Introduction to Microprocessors		4
1.3	3	Background of Microprocessors		7
2	Li	iterature Survey		9
2.	1	Books		10
2.2	2	Tools		11
2.2	2.1	Simucad's Silos Software		12
2.2	2.2	VeriWell		15
2.2	2.3	Xilinx		16
2.2	2.4	Aldec By Riviera [™]		18
3	Р	roposed System		23
		Legal Statenienis		
3.	1	High-Level Architecture		24
3.1	1.1	ALU instructions		25
3.1	1.2	AGU instructions		26
3.	1.3	Pipeline Stages		26

4	I	mplementation	28
4.1	٦	The Basic Architecture	29
4.1	.1	Instruction Format	29
4.1	.2	Addressing Mode	29
4.1	.3	Instruction Specifier	30
4.2	,	Modules	31
4.2	.1	Arithmetic Logic Unit	35
4.2	.2	Address Generation Unit	42
4.2	.3	Controller	45
4.2	.4	RAM	49
5		resting	50
5.1		Stimulus	51
5.2	1	Tests & Waveforms	52
6	ł	Explanation of Verilog Code	65
6.1	1	Behavioral Modeling	66
6.2	2	Data types	66
6.3	3	Legal Statements	66
6.4	4	Modules	67
6.	5	Macros	69

7	Conclusions	70
8	Future Development	72
9	User Manual	74
10	Bibliography	77