
AMNA MASOOD

01-134132-025

Automata Studio
(FSA/TG)

Bachelor of Science in Computer Science

Supervisor: Ghulam Ali Mirza

Department of Computer Science
Bahria University, Islamabad

May 2017

c© Amna Masood, 2017

C e r t i f i c a t e

We accept the work contained in the report titled “AUTOMATA STUDIO”, written by Ms.
Amna Masood as a confirmation to the required standard for the partial fulfillment of the
degree of Bachelor of Science in Computer Science.

Approved by . . . :

Supervisor: Ghulam Ali Mirza (Assistant Professor)

Internal Examiner: Dr. Sabina Akhtar (Assistant Professor)

External Examiner: Bilal Pervez Khokhar (Senior Lecturer)

Project Coordinator: Dr. Arif Ur Rehman (Assistant Professor)

Head of the Department: Dr. Faisal Bashir (Associate Professor)

May 15th, 2017

Abstract

As we know students feel difficulties in doing their assignment specially when it requires
some hand written work. Finite state machine is one of the thing that requires hand written
diagrams and students feel very frustrated in drawing them over and over again. Because
of these reasons I have developed this application which accepts hand drawn images as an
input, and generates the graphical design view of output same as input. User can then save
the output in form of image, or can edit it. User can create FSA’s newly from the scratch,
and can save it in form of image. Automata Studio is a system developed for drawing finite
state machine with the help of graphics and image processing techniques. This application
has been designed for the ease of students and teachers who has to draw the diagrams
again and again. Clean and visible diagrams can be drawn by the help of this application.
This application is for now being limited to the drawing of the finite state machines. But in
future, (INSHALLAH) this project can be extended for generation of Regular Expressions,
Transition Graphs, Push-down Automata.

i

Acknowledgments

In the name of ALLAH the most Gracious, the most Merciful. First of all I would like to
thank Allah for his countless blessings. I would like to give a special thanks to my family
and friends who helped me a lot in finalizing this project within the limited time frame.
They have always supported me and have always been so encouraging and motivated in
every step on life. Without their prayers and support, I would have not been able to achieve
this.

Last, but not the least, I would like to express my very great appreciation to my
supervisor Sir Ali Mirza for his valuable and constructive suggestions at every step of
planning and development of this project. His willingness to give his time and being so
patient all the time is appreciated.

AMNA MASOOD
Bahria University Islamabad, Pakistan

May 2017

ii

“We think someone else, someone smarter than us,
someone more capable, someone with more resources will solve that problem.

But there isn’t anyone else.”

Regina Dugan

iii

Contents

1 Introduction 1
1.1 Project Background/Overview . 1
1.2 Problem Description . 1
1.3 Project Objectives . 2
1.4 Project Scope . 2

2 Literature Review 3
2.1 Introduction . 3
2.2 Circle and Lines Detection . 3

2.2.1 Hough Transformation . 3
2.2.2 Inverted Gradient Hash Maps 3
2.2.3 Gradient Threshold . 4

2.3 Text Detection . 4
2.4 Critical Evaluation . 4

3 Requirement Specifications 5
3.1 Existing System . 5

3.1.1 Limitations . 5
3.2 Proposed System . 5
3.3 Requirement Specification . 5

3.3.1 Functional Requirements . 5
3.3.2 Non-Functional Requirements 6

3.4 Use Cases . 7
3.4.1 Use Case: 1 Start Application 8
3.4.2 Use Case: 2 Loads Image . 8
3.4.3 Use Case: 3 Draw FSA from scratch 8
3.4.4 Use Case: 4 Image Processing 9
3.4.5 Use Case: 5 Editing . 9
3.4.6 Use Case: 6 Save and Print . 10
3.4.7 Use Case: 7 Exit Application 10

3.5 Sequence Diagrams . 11
3.5.1 System Sequence Diagram . 11
3.5.2 Sequence Diagram of Loading Image 11
3.5.3 Sequence Diagram of Objects Detection 12
3.5.4 Sequence Diagram of Processing Image 12

iv

CONTENTS v

4 Design 13
4.1 System Architecture . 13
4.2 Design Methodology . 14
4.3 High Level Design . 15

4.3.1 System Flow Diagram . 16
4.4 Low Level Design . 17
4.5 Class Diagram . 18

5 System Implementation 19
5.1 Tools and Technology . 19

5.1.1 Visual Studio 2013 . 19
5.1.2 AForge.NET . 19
5.1.3 Accord.NET . 19
5.1.4 Graphical Device Interface (GDI+) 20

5.2 Methodology and Algorithm Development 21
5.2.1 Image Loading . 21
5.2.2 Segmentation . 21
5.2.3 Recognition . 23
5.2.4 Graphics Loading . 24
5.2.5 Creating FSA from scratch . 24

5.3 System Design GUI . 25

6 System Testing and Evaluation 32
6.1 Graphical User Interface (GUI) Testing 32
6.2 Usability Testing . 33
6.3 Software Performance Testing . 33
6.4 Compatibility Testing . 33
6.5 Exception Handling . 34
6.6 Load Testing . 34
6.7 Test Cases Testing . 34

6.7.1 Test Case 1: Load Image . 34
6.7.2 Test Case 2: Pre-processing Image 34
6.7.3 Test Case 3: Objects Loading on Canvas 35
6.7.4 Test Case 4: Saving Image . 35

7 Conclusions 36
7.1 Conclusion . 36
7.2 Perspective . 36

8 Sample Images 37

References 39

List of Figures

3.1 System Use-Case Diagram . 7
3.2 System Sequence Diagram . 11
3.3 Sequence Diagram of Loading Image 11
3.4 Sequence Diagram of Objects Detection 12
3.5 Sequence Diagram of Processing Image 12

4.1 System Architecture Design . 13
4.2 System Methodology . 14
4.3 System High Level Design . 15
4.4 System Flow Diagram . 16
4.5 System Low Level Design . 17
4.6 System Class Diagram . 18

5.1 References used in System . 20
5.2 Loadin Image . 21
5.3 Gray-scale Image . 21
5.4 Binarized Image . 22
5.5 Dilation . 22
5.6 Erosion . 22
5.7 Connected component labeling through colors 23
5.8 Connected component labeling through Rectangles 23
5.9 Multiclass SVM example . 24
5.10 Main Form of the System . 25
5.11 (LEFT) Blank Loading Form, (CENTER) Loaded Image, (RIGHT) Pro-

cessed Image . 25
5.12 Loaded objects on screen . 26
5.13 Viewing options of ToolBox and PropertyPanel 26
5.14 Select Tool and Draw on Cavas . 27
5.15 Changing Properties of Selected Object 27
5.16 (a) Select ‘Text’ tool from the ToolBox and Edit its properties from ‘Prop-

ertyPanel’ Form (before) . 28
5.17 (b) Select ‘Text’ tool from the ToolBox and Edit its properties from ‘Prop-

ertyPanel’ Form (after) . 29
5.18 (LEFT) Select an object and drag it to the desired location, (RIGHT) Group

selection of the objects. 29
5.19 (LEFT) Resizing object, Select desired object and resize by the help of

mouse (before), (RIGHT) Resizing object (after) 30

vi

LIST OF FIGURES vii

5.20 Objects can be deleted, On Right Button press of mouse. 30
5.21 (LEFT) Arrow can be rotated (before), (RIGHT) Arrow can be rotated (after) 31
5.22 (LEFT) Save Canvas in form of Image, (RIGHT) Save Dialog Box 31

8.1 Sample Image (1) . 37
8.2 Sample Image (2) . 37
8.3 Sample Image (3) . 38
8.4 Sample Image (5) . 38
8.5 Sample Image (6) . 38

List of Tables

3.1 Use Case: Start Application . 8
3.2 Use Case: Loads Image . 8
3.3 Use Case: Draw FSA from scratch . 8
3.4 Use Case: Image Processing . 9
3.5 Use Case: Editing . 9
3.6 Use Case: Save/Print . 10
3.7 Use Case: Exit application . 10

6.1 Classification Rate of system . 33
6.2 Test Case: Start Application . 34
6.3 Test Case: Pre-processing Image . 34
6.4 Test Case: Objects Loading on Canvas 35
6.5 Test Case: Objects Loading on Canvas 35

viii

Acronyms and Abbreviations

FSM Finite State Machine
FSA Finite State Automata
GDI Graphics Device Interface
GLCM Gray Level Co-occurrence Matrix
PDA Push Down Automata
SVM Support Vector Machine

ix

Chapter 1

Introduction

1.1 Project Background/Overview

Finite-State Machines (FSM), also called Finite State Automata (singular: automaton) or
just finite automata are much more restrictive in their capabilities than Turing machines.
Building a FSM is a very different form of process. These machines requires each state
to be connected with an explicit transition to the next state. No programming language
requires this, everything is done implicitly based on the semantics of the language itself
(e.g. a C++ compiler builds sequences from statements). The process of editing the logic
of a FSM is very low-level and quite mechanical. You often find yourself rebuilding the
similar behaviors over and over again from scratch, which takes a lot of time. All you
can do is edit transitions from one state to another. This application will be designed for
desktop computers. This system generates Finite State Machine also known as Transition
Graph. This application uses image processing techniques to read image from external
source (like camera). Then loads it in the editor and offers basic tools for working with
Finite Automata, such as basic algorithms for Finite Automata. Image recognitions, shapes
detection, text extraction and all techniques will be used in this software [3]. This software
will be an open source software which will be available for everyone. One most important
benefit of this software is that user can load an image into the editor, which no other editor
can do.

1.2 Problem Description

In daily life people finds it very difficult to draw a finite state machine. With just one little
mistake they have to draw it over and over again. It takes a lot of time too. Teachers find
it tough to check, or to draw FSM for so many students, as well as students also faces
difficulties in doing assignments. Benefit of this software is that teachers and students will
be able to draw and read FSM without any difficulty and waste of time.

1

Introduction 2

1.3 Project Objectives

The objective of this project is to detect FSA through a captured image (or may be scanning)
to create a finite state machine in the Automata Studio. Basically developed for the ease of
teachers and students.

1.4 Project Scope

Automata Studio will be an open source application, easily available to everyone. This
will help the user to load an image into the software, which will read the state machine
diagram, and editing can be done over it. System will provide following functionality:

• Image loading from camera and creating FSA of that image

• Creating newly FSA and applying all editing functionality

• Insertion of state in existing FSA

• Deleting any state

• Modification in FSA

This software is expected to create regular expressions as well, on the basis of finite state
machines. This system can be modified to generate ’Turing Machine’, as well as ’Push
Down Automata (PDA)’. But as I am doing this project alone, so main focus and concern
of this project is to read finite state machine using image processing techniques, and
providing editing options to the user. If these are requirements are timely fulfilled, I might
extend my work to generate regular expressions.

Chapter 2

Literature Review

2.1 Introduction

In this Literature review, our aim is to provide a detail study about the work that has been
done by the researchers on finite state machine (automata) through which this software has
been made i.e. Automata Studio. Many different approaches and algorithms are used by
the researchers to implement such systems which can be more efficient and optimal.

2.2 Circle and Lines Detection

In an image processing application detection of lines and circle is the fundamental step.

2.2.1 Hough Transformation

In image processing Hough transform is one of the famous feature extracting technique.
It’s used to identify lines, circles, and curve structured objects in an image. Kerbyson and
Atherton conducted a research on Hough transformation to detect circles of different radii
using single parameter space. They expressed a modernistic circle Hough transformation
technique using oriented and distant information for the circle position accuracy. [1]

2.2.2 Inverted Gradient Hash Maps

Hough transform is not always the efficient algorithm in field of image processing. While
there are many other algorithms present for the detection of line and circle but they are
all slow. However R.Gonzalez has presented an algorithms which is fast enough to detect
line and circles using inverted gradient hash maps. This algorithm computational time by
reducing the processing pixels of an image. [2]

3

Literature Review 4

2.2.3 Gradient Threshold

Detection of line is a classical problem in computer vision and image processing field.
Most of the common algorithms uses gradient magnitude and direction technique. Some
researchers proposed a flexible and robust method using gradient threshold with the weight
mean shift procedure. According to their experiments there method is most accurate when
compared with the Hough transformation, line detector, and other algorithms. [3]

2.3 Text Detection

Text detection and recognition from an image is one of the most challenging task in image
processing applications.

Ye et al made a research on text detection and recognition in an image and they dis-
cuss the problems and challenges, proposed schemes and performance of text detection
and recognition in an image. They have highlighted some special issues associated the
processing of text. Fundamental comparisons and analysis are also discussed in there
research. [4]

In another research, a new algorithm is proposed for the detection of text in still images.
This algorithm is based on the truncation error generated by high contrast edges of text
boundaries when image is compressed to .JPEG. After many experiments on a set of
hundreds of image they have concluded that the new algorithm is an effective and gives
good accuracy in detecting overlay text. [5]

Xu-Cheng Yin and members have made research in which they proposes a framework
learning and multi-oriented scene text detection system. There proposed system is so
effective that it is graded on several public scene text databases. [6]

2.4 Critical Evaluation

A lot of research has been made in the detection of circle and line. Many new fast and
efficient algorithms have been proposed. Different techniques are being implemented to
produce good results.

Chapter 3

Requirement Specifications

3.1 Existing System

There are many existing online web application based FSM generator available online
which allows you to create finite state machines. There are also many websites which
allow you to generate finite state machines based on regular expressions.

3.1.1 Limitations

This current system is limited to the detection and drawing of FSA. But can be extended to
generate regular expression based on the FSA image drawn.

3.2 Proposed System

The proposed system is an open source software that will allow the user to create finite
state machines. Along with the editing options. User can load images and software will
create the FSA just like made on image, as well as user can create FSA from the start
which can be saved as an image. This proposed system is a complete studio which creates
a finite state machine (transition graph) using image processing techniques. This system
can also a FSM editor.

3.3 Requirement Specification

3.3.1 Functional Requirements

The functional requirement from the user point of view are as following:

1. User Requirements (FSA drawn via image)

• Start the application

5

Requirement Specifications 6

• Load an image

• FSA is drawn on the screen based upon the FSA in image

• Save the image

• Print the image

• Close the image

2. User Requirements (FSA drawn from scratch)

• Start the application

• Load an image

• FSA is drawn on the screen using toolbox by drag and drop

• Save the image

• Print the image

• Close the image

3. Benefits
Benefits of this software are that this is specially made for ease of teachers and
students who needs to draw finite state machines over and over again. This software
will reduce their time and will help them in their work.

4. Technical issues
This software might have some technical issues:

• if image is not scanned properly.

• image might take some time in loading and processing.

• result may vary from the image loaded if not scanned properly.

5. Risks
This system involves few risks, which are following:

• if in an image the objects are not drawn with some space, then it might produce
failed results.

• shape detection and text recognition may fail some time.

3.3.2 Non-Functional Requirements

The non-functional requirement of the system are following:

1. Performance
The system should be efficient and performing the FSA design without any noticeable
delay by the user.

3.4 Use Cases 7

2. Reliability
The system should reliably segment and recognize the shapes, lines and the text.
The position of shapes, line with respect to the image as well as with respect to one
another should also be reliably drawn so that the drawn FSA exactly like the one
made on image.

3. Portability
The software is a windows based application and can be easily installed on any
operating system and can be used effectively.

4. Security
The system does not have any specific security requirements.

5. Availability
The system does not requires any Internet connectivity and will be available once the
system is installed on device.

6. Maintainability
The maintenance of the application will be carried out by the developers, if required.

3.4 Use Cases

Following is the full system Use-Case diagram.

Figure 3.1: System Use-Case Diagram

Requirement Specifications 8

Following are the detailed tables of each use case.

3.4.1 Use Case: 1 Start Application

Use Case Number UC-1
Use Case Name Start Application
Description User has to start the application by clicking on the logo button.
Actors User
Pre-Conditions None

Basic Flow 1. Click on the application icon
2. Application will be launched

Post-Conditions Application will launch
Table 3.1: Use Case: Start Application

3.4.2 Use Case: 2 Loads Image

Use Case Number UC-2
Use Case Name Loads Image
Description User loads image into the system.
Actors User
Pre-Conditions Application should be launched

Basic Flow 1. Application launches
2. User loads an image in to the system

Post-Conditions Image processing techniques will be applied
Table 3.2: Use Case: Loads Image

3.4.3 Use Case: 3 Draw FSA from scratch

Use Case Number UC-3
Use Case Name Draw FSA from scratch

Description User can,also draw FSA from the start without loading image.
User can drag and drop,the objects from the toolbox.

Actors User
Pre-Conditions Application should be launched

Basic Flow

1. Launch the application
2. From the toolbox, drag the circles
3. Drag the lines
4. Insert text

Post-Conditions Editing can be applied
Table 3.3: Use Case: Draw FSA from scratch

3.4 Use Cases 9

3.4.4 Use Case: 4 Image Processing

Use Case Number UC-4
Use Case Name Image Processing

Description When user loads an image in system, system processes some
functions over it to extract the required data

Actors User
Pre-Conditions Application should be launched and Image should be loaded

Basic Flow

1. User loads an image
2. System converts bitmap image to un-managed image
3. System converts image into gray-scale image
4. Sauvola threshold is applied
5. System uses canny edge detector to detect edges
6. Image passes through morphological steps
7. Through connected components objects are separated
8. Blobs are detected and are separated through neural network testing
9. Objects are then classified into groups and shapes and are drawn
over the screen as shown in image.

Post-Conditions Objects,are drawn and image can be saved or
print as respect to user choice.

Table 3.4: Use Case: Image Processing

3.4.5 Use Case: 5 Editing

Use Case Number UC-5
Use Case Name Editing

Description
When user,loads image or draw it by itself,
further more options are provided to user,
to modify the image which has been drawn by the system.

Actors User
Pre-Conditions Image should be loaded or drawn by the user

Basic Flow

1. If user loads the image
2. After image processing techniques the system draw
the FSA as shown in the image
3. Editing options are given to the user
4. Deleting any state(s)
5. Adding more states

Post-Conditions Saving or printing the image.
Table 3.5: Use Case: Editing

Requirement Specifications 10

3.4.6 Use Case: 6 Save and Print

Use Case Number UC-6
Use Case Name Save/Print
Description After all the processing user is given the option to save its work

or directly print it.
Actors User

Pre-Conditions Image,should be loaded, Image processing should be
applied or editing should be,done by user.

Basic Flow
1. Click on to save option
2. Image will be saved
3. Image can be directly be printed too.

Post-Conditions Exit the application or load more image to continue the work.
Table 3.6: Use Case: Save/Print

3.4.7 Use Case: 7 Exit Application

Use Case Number UC-7
Use Case Name Exit application
Description User can exit the application by choosing exit option.
Actors User
Pre-Conditions Application should be launched

Basic Flow
1. Select exit option from the menu bar
2. Application will be closed
3. Saving or printing the work done option will be given before exiting.

Post-Conditions None.
Table 3.7: Use Case: Exit application

3.5 Sequence Diagrams 11

3.5 Sequence Diagrams

The sequence diagram of the system are as following:

3.5.1 System Sequence Diagram

Figure 3.2: System Sequence Diagram

3.5.2 Sequence Diagram of Loading Image

Figure 3.3: Sequence Diagram of Loading Image

Requirement Specifications 12

3.5.3 Sequence Diagram of Objects Detection

Figure 3.4: Sequence Diagram of Objects Detection

3.5.4 Sequence Diagram of Processing Image

Figure 3.5: Sequence Diagram of Processing Image

Chapter 4

Design

In this chapter the design and architecture of the system are discussed.

4.1 System Architecture

The system being developed comprises of user interface where user loads image, or drags
the objects from toolbox to draw finite state machine. System architecture design is shown
in the figure 4.1

Figure 4.1: System Architecture Design

13

Design 14

4.2 Design Methodology

Following figure shows the system design methodology.

Figure 4.2: System Methodology

4.3 High Level Design 15

4.3 High Level Design

Following is the system high level design.

Figure 4.3: System High Level Design

Design 16

4.3.1 System Flow Diagram

Following diagram shows the flow of the system.

Figure 4.4: System Flow Diagram

4.4 Low Level Design 17

4.4 Low Level Design

Figure 4.5: System Low Level Design

Design 18

4.5 Class Diagram

Following figure is the class diagram of the developed system.

Figure 4.6: System Class Diagram

Chapter 5

System Implementation

This chapter consists of system implementation, detailed description of tools and technolo-
gies used in this project along with the algorithms.

5.1 Tools and Technology

This system uses following tools for the recognition and drawing of the objects.

5.1.1 Visual Studio 2013

Microsoft visual studio 2013 uses a platform where integrated environment systems are
developed. This software application provides different programming languages code
editor. This software can also be used for applications such as GUI, database application,
web designing etc. This platforms supports C++, C#, Visual Basic, Web developer and
many more. Whereas this proposed system is developed using C-Sharp (C#) language.

5.1.2 AForge.NET

AForge.Net is a framework which supports C# language, consisting several libraries for
computer vision and artificial intelligence. This framework provides a scientific computing
framework. Its different libraries also available in executable programs giving a wide range
to scientific computing applications, such as feature extracting, machine learning, and
pattern recognition, including computer vision and computer audition.

5.1.3 Accord.NET

Accord.net is an extended framework of AForge.NET in field of computer vision and
artificial intelligence. It is a machine learning platform consisting of audio and image

19

System Implementation 20

processing libraries. These libraries are written in C-sharp language and are available in
form of source code and nugget packages. This framework is very good for commercial
use applications. Following are the few libraries which are used in this project.

• Accord.Imaging - This library contains interested point detectors (such as Surf, Fast,
Harris and Freak), image filters, image matching and image stitching methods, as
well as feature extractors such as Histograms of Oriented Gradients and Haralick’s
textural feature descriptors.

• Accord.Control - Histograms, scatter plots and tabular data viewers for scientific
applications.

• Accord.Controls.Imaging - Windows Forms controls to show and handle images.

• Accord.Statistics - Contains probability distributions, hypothesis testing, statistical
models and methods such as Linear and Logistic regression, Hidden Markov Models,
(Hidden) Conditional Random Fields, Principal Component Analysis, Partial Least
Squares, Discriminant Analysis, Kernel methods and many other related techniques.

• Accord.MachineLearning- Provides machine learning classes, such as Support Vec-
tor Machines (SVM), Decision Trees, Naive Bayesian models, K-means, Gaussian
Mixture models.

5.1.4 Graphical Device Interface (GDI+)

Figure 5.1: Refer-
ences used in Sys-
tem

GDI+ is a library that provides programming interface to create Mi-
crosoft Windows applications and Web Graphics applications that
interacts with graphical devices. GDI is very useful for drawing 2D
graphics on multiple devices. GDI consists of sets of different pro-
gramming languages which are used in both managed and un-managed
code. Code written in C# language is the managed code. In .Net Frame-
work, provided managed GDI+ classes are defined in System.Drawing
namespace. This namespace has further five more namespaces which
are used in this project. They are:

• System.Drawing.Design

• System.Drawing2D

• System.Drawing.Imaging

• System.Drawing.Printing

• System.Drawing.Text

5.2 Methodology and Algorithm Development 21

5.2 Methodology and Algorithm Development

5.2.1 Image Loading

Samples images are already present in the system, they can be loaded
to the picture box and tested even. User can load other pictures as well.

Figure 5.2: Loadin Image

5.2.2 Segmentation

Segmentation is the first step of pre-processing image after loading it in system. It uses
Accord libraries for processing.

1. Gray-scaling
First step is to convert 24-bit image (3-channel) into single channel i.e 8-bit gray-
scale image. Gray-scale image has 256 colors ranging form 0 (black) to 255 (white).
The image is converted into gray-scale using Accord gray-scale filter.

Figure 5.3: Gray-scale Image

System Implementation 22

2. Binarization
Binarization is the conversion of gray-scale (8-bit) image to binary image. This is
done by using Sauvola Thresholding method. Now the image is converted into black
and white.

Figure 5.4: Binarized Image

3. Dilation The next step is to dilate the image, which fills any small gaps present in
the between object. It helps in detecting components.

Figure 5.5: Dilation

4. Erosion The next step is erosion step, which helps in separation of any two or more
components closely made.

Figure 5.6: Erosion

5.2 Methodology and Algorithm Development 23

5. Connected Component Labeling the components are extracted using Blob class,
which counts and extracts each component in image using connected component
labeling algorithm.

Figure 5.7: Connected component labeling through colors

Figure 5.8: Connected component labeling through Rectangles

5.2.3 Recognition

For objects recognition, this problem involves 20 classes, consisting of all objects (circle,
arrow, loop, digits (0-9), alphabets(a-z, +,-,’,’).

1. Feature Extraction
After processing images, features are extracted and saved in excel file for classifica-
tion stage.

Gray Level Concurrence Matrix (GLCM)
Features are extracted using GLCM class which present in Accord.NET. This is a
matrix of frequencies at which two pixels, separated by a certain vector, occur in
the image called co-occurrence matrix. During feature extraction of each object,
class number is assigned to it which helps in classification. GLCM represents the
distance and angular spatial relationship over an image sub-region of specific region
of specific size and distance. The GLCM calculates, how often a pixel with gray-level
value i occurs either horizontally, vertically or diagonally to adjacent pixels with the
value. GLCM of an image is computed using a displacement vector d, defined by its
radius and orientation. Features computed from GLCM are textual information about
the image proposed by Haralick. These are Energy, Entropy, Contrast, Correlation,

System Implementation 24

Homogeneity, Angular Second Movement, Contrast, Correlation, Variance, Inverse
Difference Moment, Sum Average, Sum Variance, Sum Entropy, Difference Variance,
Difference Entropy, Mean of Correlation.

2. Classification
The Support Vector Machine is a supervised learning method for classification and
regression. One way to extend the simple Support Vector Machine to multiple
classes is to create a one-Vs-one scheme where multiple Support Vector Machines
are specialized to recognize each class. For this proposed system Multi-class Kernel
Support Vector Machine Classifier is used, which uses an array of inputs[], and array
of outputs[] and a kernel (Gaussian). Kernel class is also present in Accord.NET. It
decides the hyper plane dimensions. For this proposed system, we trained a separate
SVM for this system. Inputs and outputs are extracted from Excel file, in which
features were saved.

Figure 5.9: Multiclass SVM example

5.2.4 Graphics Loading

After pre-processing the image, required objects are created on the screen (as shown in
Figure 5.12) with the help of 2D-graphics. For creating objects on screen GDI+ library is
used. User can now Edit the image, or save it directly in form of an image.

5.2.5 Creating FSA from scratch

By the help of using GDI+ libraries, Finite state machine can be created easily by drag and
drop method. After creating FSA, user can save the work in form of image and print it
later on.

5.3 System Design GUI 25

5.3 System Design GUI

Figure 5.10: Main Form of the System

Figure 5.11: (LEFT) Blank Loading Form, (CENTER) Loaded Image, (RIGHT) Processed Image

System Implementation 26

Figure 5.12: Loaded objects on screen

Figure 5.13: Viewing options of ToolBox and PropertyPanel

5.3 System Design GUI 27

Figure 5.14: Select Tool and Draw on Cavas

Figure 5.15: Changing Properties of Selected Object

System Implementation 28

Figure 5.16: (a) Select ‘Text’ tool from the ToolBox and Edit its properties from ‘PropertyPanel’
Form (before)

5.3 System Design GUI 29

Figure 5.17: (b) Select ‘Text’ tool from the ToolBox and Edit its properties from ‘PropertyPanel’
Form (after)

Figure 5.18: (LEFT) Select an object and drag it to the desired location, (RIGHT) Group selection
of the objects.

System Implementation 30

Figure 5.19: (LEFT) Resizing object, Select desired object and resize by the help of mouse (before),
(RIGHT) Resizing object (after)

Figure 5.20: Objects can be deleted, On Right Button press of mouse.

5.3 System Design GUI 31

Figure 5.21: (LEFT) Arrow can be rotated (before), (RIGHT) Arrow can be rotated (after)

Figure 5.22: (LEFT) Save Canvas in form of Image, (RIGHT) Save Dialog Box

Chapter 6

System Testing and Evaluation

Testing is a process of executing a program with aim of discovering errors and trying to
make sure that system fulfills the required needs as in accordance with software requirement
documentation. Software requirement testing detects any if malfunctioning in the system
occurs, and corrected before delivering the product. The primary goal is to guarantee that
the developed system is up to required standards. There are many types of testing which
are as following:

6.1 Graphical User Interface (GUI) Testing

User interface plays an important role in interaction of user with the system. If the interface
is simple, easy and user friendly, user can easily learn the use of system. This system
provides a clean simple interface with a canvas and toolboxes. User can create Finite state
machine very easily with the help of drag and drop of objects. User can also load image
into the system and graphical finite state machine is created by the system and displayed to
the user on screen.

32

6.2 Usability Testing 33

6.2 Usability Testing

The system is developed under standard and with easy to use features. System has been
tested by the subjects and gave feedback on system efficiency, usability, and on different
aspects of interface. The user did not report any major issue in the system usability and
were able to create Finite State machines easily.

6.3 Software Performance Testing

Software performance testing is carried out to ensure that system developed is delivering
the desired functionality, efficiently and reliably. Objects recognition is based on correct
segmentation, detection and labeling of features and recognition. Classification rate of this
system is displayed in the following table:

Class Training Testing
0 109 40
1 123 30
2 79 20
3 132 30
4 95 20
5 138 30
6 137 20
7 131 20
8 145 10
9 144 20
a 36 10
b 31 5
c 83 10
d 54 5
- 63 10
+ 51 10
, 45 10
circle 104 20
loop 120 10
arrow 69 15

Table 6.1: Classification Rate of system

6.4 Compatibility Testing

Compatibility testing is the process to ensure that system is compatible with different
versions of Windows operating system. Currently system has been developed on Visual
Studio 2013 which is compatible with different version of windows.

System Testing and Evaluation 34

6.5 Exception Handling

The system may generate an exception if the Accord.NET .dlls are not placed in the
resource file of the project. The .dlls must therefore be added correctly in order to avoid
this exception.

6.6 Load Testing

Load testing is done to check the system behavior at normal conditions as well as heavy
load conditions. The system should operate in both conditions, however it might take few
minutes if high resolution images is loaded for processing. This system does not requires
high resolution images, features can be easily segmented and recognized in the normal
resolution images.

6.7 Test Cases Testing

6.7.1 Test Case 1: Load Image

Test Case Id TC-1
Unit of Test Test to verify that image is loaded successfully.

Steps to be executed 1. Click on Load Image from File Menu.
2. Open File Dialog open, select image.

Expected Result Image is loaded successfully.
Actual Result Image is loaded successfully.
Status Pass.

Table 6.2: Test Case: Start Application

6.7.2 Test Case 2: Pre-processing Image

Test Case Id TC-2
Unit of Test Test to verify that image is successfully pre-processed.
Steps to be executed Press Create FSA button.
Expected Result Image is pre-processed successfully.
Actual Result Image is pre-processed successfully.
Status Pass.

Table 6.3: Test Case: Pre-processing Image

6.7 Test Cases Testing 35

6.7.3 Test Case 3: Objects Loading on Canvas

Test Case Id TC-3
Unit of Test Test to verify that objects are successfully loaded on screen after pre-processing.
Steps to be executed Check objects drawn on canvas.
Expected Result Objects should be drawn to the image.
Actual Result Objects are drawn on screen.
Status Pass.

Table 6.4: Test Case: Objects Loading on Canvas

6.7.4 Test Case 4: Saving Image

Test Case Id TC-4
Unit of Test Test to verify that image is saved successfully in desired folder.
Steps to be executed Press ’Save’ button, open file dialog appears.
Expected Result Image should be saved successfully in desired folder
Actual Result Image is saved successfully.
Status Pass.

Table 6.5: Test Case: Objects Loading on Canvas

Chapter 7

Conclusions

7.1 Conclusion

Automata Studio is a system developed for the ease of students and teachers. Although
there are many online editors present out there which can draw finite state machines, but
this system uses image processing techniques and can load hand drawn sketch image into
system and can draw state machine according to the image. The finite state machines
drawn on a paper are binarized, and objects are segmented from the image. The extracted
objects are then recognized using Multi-class Support Vector Machine classifier. Once
recognized, the objects are placed on a new canvas using graphics libraries. The resultant
drawn image can be edited and saved on the run time. User can create Finite state machine
from scratch also.

7.2 Perspective

The present version of the system relies on limited hand drawn objects. These can be
further enhanced by using more data sets, and classified using multi-layer artificial neural
network. The image processing techniques used for the pre-processing can be improved by
using other advanced algorithms. This system can be further implemented for generating
regular expressions on basis of drawn finite state machine. It is expected that this study
will contribute towards the development of a complete tool used for finite state machine,
regular expression, transition graphs.

36

Chapter 8

Sample Images

Following are some Sample images used in the system.

Figure 8.1: Sample Image (1)

Figure 8.2: Sample Image (2)

37

Sample Images 38

Figure 8.3: Sample Image (3)

Figure 8.4: Sample Image (4)

Figure 8.5: Sample Image (5)

References

[1] T. J. Atherton. Kerbyson, D. J. Circle detection using hough transform filters. Image
Processing and its Applications 1995., Fifth International Conference on., 1995.
Cited on p. 3.

[2] Ruben. Gonzalez. Fast line and circle detection using inverted gradient hash maps.
2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015. Cited on p. 3.

[3] et al. Wang, Yi. Line detection algorithm based on adaptive gradient threshold and
weighted mean shift. Multimedia Tools and Applications, 2016. Cited on p. 4.

[4] Qixiang Ye and David Doermann. Text detection and recognition in imagery: A survey.
IEEE transactions on pattern analysis and machine intelligence., 37:1480–1500, 2015.
Cited on p. 4.

[5] Dinesh Bhardwaj and Vinod Pankajakshan. Image overlay text detection based on jpeg
truncation error analysis. IEEE Signal Process. Lett., 23:1027–1031, 2016. Cited
on p. 4.

[6] et al. Yin, Xu-Cheng. Multi-orientation scene text detection with adaptive clustering.
IEEE transactions on pattern analysis and machine intelligence., 37:1930–1937, 2015.
Cited on p. 4.

39

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Project Background/Overview
	1.2 Problem Description
	1.3 Project Objectives
	1.4 Project Scope

	2 Literature Review
	2.1 Introduction
	2.2 Circle and Lines Detection
	2.2.1 Hough Transformation
	2.2.2 Inverted Gradient Hash Maps
	2.2.3 Gradient Threshold

	2.3 Text Detection
	2.4 Critical Evaluation

	3 Requirement Specifications
	3.1 Existing System
	3.1.1 Limitations

	3.2 Proposed System
	3.3 Requirement Specification
	3.3.1 Functional Requirements
	3.3.2 Non-Functional Requirements

	3.4 Use Cases
	3.4.1 Use Case: 1 Start Application
	3.4.2 Use Case: 2 Loads Image
	3.4.3 Use Case: 3 Draw FSA from scratch
	3.4.4 Use Case: 4 Image Processing
	3.4.5 Use Case: 5 Editing
	3.4.6 Use Case: 6 Save and Print
	3.4.7 Use Case: 7 Exit Application

	3.5 Sequence Diagrams
	3.5.1 System Sequence Diagram
	3.5.2 Sequence Diagram of Loading Image
	3.5.3 Sequence Diagram of Objects Detection
	3.5.4 Sequence Diagram of Processing Image

	4 Design
	4.1 System Architecture
	4.2 Design Methodology
	4.3 High Level Design
	4.3.1 System Flow Diagram

	4.4 Low Level Design
	4.5 Class Diagram

	5 System Implementation
	5.1 Tools and Technology
	5.1.1 Visual Studio 2013
	5.1.2 AForge.NET
	5.1.3 Accord.NET
	5.1.4 Graphical Device Interface (GDI+)

	5.2 Methodology and Algorithm Development
	5.2.1 Image Loading
	5.2.2 Segmentation
	5.2.3 Recognition
	5.2.4 Graphics Loading
	5.2.5 Creating FSA from scratch

	5.3 System Design GUI

	6 System Testing and Evaluation
	6.1 Graphical User Interface (GUI) Testing
	6.2 Usability Testing
	6.3 Software Performance Testing
	6.4 Compatibility Testing
	6.5 Exception Handling
	6.6 Load Testing
	6.7 Test Cases Testing
	6.7.1 Test Case 1: Load Image
	6.7.2 Test Case 2: Pre-processing Image
	6.7.3 Test Case 3: Objects Loading on Canvas
	6.7.4 Test Case 4: Saving Image

	7 Conclusions
	7.1 Conclusion
	7.2 Perspective

	8 Sample Images
	References

