
Cross Site Scripting (XSS) Web Attack
Detection by Machine Learning

KAMRAN ALI KHAN

01-134132-076
RANA M. USMAN NASIR

01-134132-158

Bachelor of Science in Computer Science

Supervisor: Mr. Umar Khattak

Department of Computer Science
Bahria University, Islamabad

May 2017

c© Kamran Ali Khan & Rana M. Usman Nasir, 2017

C e r t i f i c a t e

It is to certify that the final year project of BS (CS) “Cross Site Scripting (XSS) Web Attack
Detection by Machine Learning”, was developed by Kamran Ali Khan, Rana Usman Nasir
under the supervision of “Mr. Umar Khattak” and in his opinion; it is fully adequate, in
scope and quality for the degree of Bachelors of Science in Computer Science.

Approved by . . . :

Supervisor: Mr. Umar Khattak (Lecturer)

Internal Examiner:

External Examiner:

Project Coordinator: Dr. Arif Ur Rahman (Assistant Professor)

Head of the Department: Dr. Faisal Bashir (Associate Professor)

May 19th, 2017

Abstract

In today’s world, Web application security is a major issue for web application developers.
There are several reasons behind that but the major cause of this problem is that most of
the web developers don’t have the adequate knowledge regarding secure coding. So, taking
advantage of that carelessness of the developers, web applications have vulnerabilities and
attackers take advantage of that.
In this project, we build a firewall which detects the XSS (Cross Site Scripting) vulnerabil-
ities through machine learning and tries to block web attacks preventing web applications
from serious troubles. The system makes decisions through a dataset which is provided to
the system, we then use machine learning algorithm to classify each web request, whether
it is a harmful request or not. There is no need of any headache procedures for the web
application’s security department as it is automatically configured and there is no need
to define attack signatures. Web application security is very expensive field nowadays,
companies use most of their budget in this field. Our system is free for the web application
developers and users. Our system detects XSS automatically by classification of input
using machine learning techniques. Our proposed features show the results which are a
highly accurate classification of malicious inputs.

i

Acknowledgments

All praise is to Almighty Allah who bestowed upon us a minute portion of his boundless
knowledge by virtue of which we are able to accomplish this challenging task. We are
greatly indebted to our supervisor “Mr. Umar Khattak”. Without his personal supervision,
advice and valuable guidance, completion of this thesis would have been doubtful. We are
deeply indebted to him for his encouragement and continual help during this work.

KAMRAN ALI KHAN

RANA M. USMAN NASIR
Islamabad, Pakistan

May 2017

ii

“We think someone else, someone smarter than us, someone more capable, someone with
more resources will solve that problem. But there isn’t anyone else.”

Regina Dugan

iii

Contents

Abstract i

1 Introduction 1
1.1 Project Background . 1
1.2 Problem Description . 1
1.3 Project Objectives . 2
1.4 Project Scope . 2

2 Literature Review 3
2.1 Related Work . 3

3 Requirement Specifications 8
3.1 Proposed System . 8
3.2 Existing System . 8
3.3 Requirement Specifications . 9

3.3.1 Functional Requirements . 9
3.3.2 Non-Functional Requirements 9

3.4 Use Cases . 10

4 Design 17
4.1 System Architecture . 17

4.1.1 Design Methodology . 18
4.2 High Level Design . 18

4.2.1 Conceptual or Logical Design 19
4.2.2 Process . 19
4.2.3 Physical . 21
4.2.4 Security . 21

4.3 External Interfaces . 22

5 System Implementation 23
5.1 System Architecture . 23
5.2 System Internal Components . 24

5.2.1 Data Acquisition . 25
5.2.2 Feature Extraction . 25
5.2.3 Classification . 25

5.3 Tools and Technology Used . 25
5.3.1 Pycharm . 25

iv

CONTENTS v

5.3.2 Clion . 26
5.3.3 CPNginx . 26
5.3.4 NGINX . 26
5.3.5 Apache . 26
5.3.6 Anaconda . 26
5.3.7 Naive Bayes Classifier . 26

5.4 Processing Logic Flow . 27

6 System Testing and Evaluation 28
6.1 System Testing and Evolution . 28
6.2 Command Line Testing . 28
6.3 Functional Testing . 29

6.3.1 Run Installer . 30
6.3.2 Run Installer . 30
6.3.3 Run Installer . 31
6.3.4 Setup Connection: . 31
6.3.5 Setup Connection . 32
6.3.6 Un-install Firewall . 32
6.3.7 Un-install Firewall . 33

6.4 Software Performance Testing . 33
6.4.1 System Accuracy Percentage Rate 33

6.5 Exception Handling . 33
6.6 Usability Testing . 34

6.6.1 User Friendly Command Line Interface 34
6.6.2 Easy to Use . 34
6.6.3 Easy to Learn . 34

7 Conclusions And Future Work 35

conclusion 35
7.0.1 Future Enhancements . 35

List of Figures

3.1 Main Use Case Diagram . 10
3.2 Install Script . 11
3.3 Load Training Traffic Set . 12
3.4 Convert Raw Data into Useful Data . 12
3.5 Extracting Featuring . 13
3.6 Training the Model . 14
3.7 Load the Testing Data . 14
3.8 Evaluate . 15
3.9 Product . 16

4.1 System Architecture . 17
4.2 Diagram of the Methodology of the Application 18
4.3 DFD diagram of Project . 19
4.4 Package Diagram of the Application . 20
4.5 Sequence Diagram . 20
4.6 Class Diagram of the Application . 21
4.7 Deployment Diagram of the Application 21

5.1 System Architecture . 24
5.2 System’s Internal Diagram of Application 24
5.3 Processing Logic Flow Diagram of Application 27

6.1 Command Line . 28
6.2 One Argument . 29
6.3 All Arguments . 29

vi

List of Tables

2.1 Literature Review in Tabular Form . 6

3.1 Main Use Case . 11
3.2 Install Script . 11
3.3 Load Training Traffic Set . 12
3.4 Convert Raw Data into Useful Data . 13
3.5 Extracting Features Through Frequency Count 13
3.6 Model’s Training . 14
3.7 Load the Testing Data . 15
3.8 Evaluate . 15
3.9 Put in production . 16

6.1 Test Case 1:Run . 30
6.2 Test Case 2:Run . 30
6.3 Test Case 3:Run . 31
6.4 Test Case 4:Setup . 31
6.5 Test Case 5:Setup . 32
6.6 Test Case 6: Un-install . 32
6.7 Test Case 7: Un-install . 33

vii

Acronyms and Abbreviations

XSS Cross-Site Scripting
IDS Intrusion Detection System
IDE Integrated Development Environment
HTTPS Hypertext Transfer Protocol Secure
DOS Denial f Service
URL Uniform Resource Locator
SQL Structured Query Language
HTML Hypertext Markup Language

viii

Chapter 1

Introduction

Web Application security is very important for the web application’s owner because
nowadays most of the businesses are online. It is a reality that in two decades the web
grown up so fast and build a platform to access and run complex web applications. These
applications might be used in daily life, or in large scale for commercial services such as
(gmail, outlook, twitter etc.). So, web applications are a common source of income and
people depend on them that’s why the security of the web application is a major issue. There
are several reasons for the insecurity of the web applications. Our project basically deals
with these issues of the web application’s security. As web applications are a very common
form of public service and they are easily accessible through HTTP protocol, that is the
reason for being easy targets for hackers or penetration testers. Our application provides
a solution that a common user can adopt to secure their web application from cross-site
scripting attacks without having the extensive knowledge of application security [4].

1.1 Project Background

Current web application firewalls are mostly signature based firewalls. They use regular
expression matching to identify malicious traffic. To use them we must define signatures of
known attacks so, that firewall can match against those rules and block them. This way of
operation is slow and produce high overheads, as there can be millions of attack signatures.
Most of the firewall are manually configured that takes time and it is expensive too [1].

1.2 Problem Description

A web application that is built on PHP or ASP as a back-end programming language
(which communicates with the database and underlying operating system) take inputs
from the user. These inputs are being stored in a database or executed at the underlying
operating system to perform various tasks. Web application developers mostly do not

1

2 Introduction

sanitize these inputs (because of time limitations, unconsciously or they don’t know) and
all the inputs (Legal and Malicious) gets processed by the application. We need to define
another layer where all these inputs are first being filtered before they reach the application
layer. Now all the input data will first pass through this layer if there is any invalid or
undesirable data it must not pass through this layer (Firewall Layer). But the problem with
available firewalls is they need to be configured and their rules must be manually defined
by a developer (i.e. which input is legal and illegal). It’s not an easy job because we
cannot predict all kind of inputs a user can send, so our application will learn from log files
generated by the server and then machine learning model will classify the future requests
into two possible categories. So, that a web developer can only focus on the development
part of the application.

1.3 Project Objectives

To design and develop an Application in which we implement a security system that
provides security through machine learning while providing smooth access to legitimate
users.

1.4 Project Scope

Basically, our objective in this project is to introduce the new way of securing the web ap-
plications. Our goals are to build a secure and intelligent Firewall for the Web applications
that does not require any user input to work. All data inputs on the web application level
must be validated on the firewall. Client side and server side validation is encouraged but
not meant to be the only control for data input validation. The most sustainable strategy for
data validation is accepting known good data (Legal Data) and so, our idea is to remove
malicious input/strings through this layer. The other solutions available require constant
maintenance and human interaction to keep the system secure and up to date.

Chapter 2

Literature Review

In this chapter, we will identify, evaluate and interpret any work or research that has been
done related to our project. It will provide help and a layout for achieving our goals. As
this project involves a lot of research work so, this chapter holds a lot of significance. This
chapter identify the different features extraction techniques and algorithms that can help
with our project.

2.1 Related Work

Author, proposed an approach which is based on Black box concept. In anomaly-based
IDS (Intrusion Detection System) several approaches are used but author used Black Box
approach. Through black box approach they send HTTP request and analyse the response,
without the internal knowledge of how application is developed. IDS detect web attacks
without the internal information of the application. Author also mentioned that they defined
different features through which they identify whether the input data is malicious or not.
First, they detect source and destination addresses by identifying whether its DOS attack
or not, secondly which type of protocol is used in the request, with the length of URL
(Uniform Resource Locator) they tried to identify whether its a SQL (Structured Query
Language) or XSS attack, the time and date of the transfer data, number of logins and the
request methods, HTTP request contain any SQL query, another feature they check is there
any script tags, hexadecimal code, Request status from browser, the response body and its
length. Through these features web application vulnerabilities can be checked, by securing
these features web applications can be secured from attacks. The author concluded that
with these features and machine learning algorithm in classification they achieved good
results specially in XSS (Cross Site Scripting) [8].
Author introduced the new technique known as taint inference. In this technique, no
need of knowing the source code and this method is efficient for low performance servers.
Most of the Applications for this interference maybe accomplished through network layer

3

4 Literature Review

interposition. Then we defined some polices that can check whether the input is malicious
or not. The results after checking through this technique are good and most attacks are
easily blocked or filtered through it. In traint inference algorithm at a time single pair of
data flow from one to another. Special names (N, I) has been given to each of them and
the output of these also with another name. Then the taint inference is checked weather
any substring has data from several algorithms might be used depend upon the data. In
this algorithm, Author rely on signal type of data and retrieve the data from the cookies
and use it further. A defined threshold used in it if data (N, I) is less than defined threshold
then other several other algorithms use and check the data. Then there is an output syntax
analysers that pass the data from the polices, which are defined. The authors concluded that
with these features of taint inferring passively observed the input and outputs of the Web
applications through this multiple language can be checked through normal manners [3].
In another study Authors proposed that most of the vulnerabilities occurs due to mistake
of programmers this paper is based on solving the problems of the source code bugs.
This hybrid method is used to detect bugs with less false positive. After the initial steps,
they used taint analysis to highlight the applicant’s vulnerabilities with the approach of
Data mining. Then use a classifier (machine learning) to guess whether each applicant
vulnerability is a false positive or not. Then correct it through the data we identify the false
positive after the comparison of several replacements. it’s very important to understand
that the given techniques might not give 100 % correct results. These are the static analysis
so, it must have issues. Data mining cannot avoid this undecidability that why it’s only
give probabilistic results. For classifications purpose the classifier use ten matric on the
base of the four parameters of each classifier. Through that data is checked. Classify the
vulnerabilities, then fixed it after correction insert it where the place they must inserted.
Mostly vulnerabilities are false positive so, source code is modifying through removing
them [5].
Author carries out the experiment for XSS detections security through two machine learn-
ing methods, Naive Bayes and Support Vector. In naive Bayes method data, must classified
in different categories. It’s an Arithmetical method which is based on Bayes rule. On
this classification, decision is made by calculating the probability and the costs. This
classifier adopts the feature conditional independence by assuming this feature value is
totally different from the class of other features. For sample "X" the Bayes classifier
calculates the posteriori probability of every given class "X". Through this they deal with
the set of labels and by storing g this set of label data in database which included positive
and negative samples whether the code is safe or malicious [6].
Author explains cross site scripting security vulnerability and its impact. Basically, attacks
are classified into two major categories the persistent and non-persistence attacks. The
persistent attacks are riskier as compared to the non-persistence attacks. With the passing
of time and due to the advancement of technologies the XSS attacks has grown. So, Author

2.1 Related Work 5

provide an approach to solve this issue that is an API known as Enterprise Security API.
Author mentioned that though this approach they have hand cross site scripting vulner-
abilities happen when the attacker injects the malicious code whether it’s in java script
or in special character that would affect the internal of the web site. He also mentions
some other tools to attack at web applications, might be they used previous session-id to
inject the malicious code, with the help of these tools they can attacks the web application
often bypassing HTTP. So, for the protection we must filter the input that can be achieved
through applications filters. So, by validating the input data by verifying http request object
for malicious content. Through ESAPI (The OWASP Enterprise Security API) based
approach validates the input data but it’s takes time but less than normal validates times.by
concluding Author said that ESAPI helps to secure the web applications and handle web
application security risks using this standard technique [2].
Author explained how the XSS vulnerabilities occurs, he explained how to tackle them.
Through feature extraction which plays an important role to check the malicious code.
Script content are used to delivering and hiding the malicious code by obfuscations (e.g.
string size, word size, arguments size etc.). There are core contents through these content
web application is target in web browser, plug in and operating system. Author also
mentioned DOM object, this type of object is target on web application vulnerabilities (like
document, URL, document. URL Un encoded, document. location, document. Referrer
etc.). So, scan the XSS and identified based on the features. so, using this we can trace the
contents and checks whether it’s a normal http packet or there is any malicious code into.
Through machine learning it will work more effective. Save these features and through
machine learning by using Naive Bayes algorithm classified the data set which is statistical
method based on it calculating the probability and costs related to each decision. Author
also Discuss Decision tree in which they organised the classification scheme. The tree
begins with the root node which is considered as a "parent node" and then the other nodes.
So, tree comparing each node value with the constant values.so these steps caring on until
the leaf node. This method of classification is like the classification of data the machine
learning algorithms by concluding Authors said that the experimental result shows the
same results as compare to Naive Bayes classifier results [7].
In the below table, we sum up all the problem that are defined above and their proposed
solutions. Authors mentioned different techniques to solve those issues and at the end we
proposed our solution how we implement the solution in our project.

6 Literature Review

Table 2.1: Literature Review in Tabular Form

Author Problem Description Solution

• El Moussaid.

• Nadya ElBachir.

• Ahmed Toumanari.

Authors described different attacks and
why they occur. Web application
hacked by hackers through SQL injec-
tions, XSS etc.

In this research authors defines a solu-
tion they named it intrusion detection
system. In anomaly- based IDS sev-
eral approaches are used but author used
Black Box approach

• Medeiros.

• Nuno F. Neves.

• Miguel Correia.

• IbÃl’ria.

Many programmers do not have ade-
quate knowledge about secure coding

Author defined an approach that use
Source code static analysis to find the
bugs in Code. This paper explores the
use of hybrid methods to detect the vul-
nerabilities.

• Taint analysis.

• Machine learning.

Code analysis (Taint analysis) Machine
learning (Data mining)

• R. Sekar.

Over the past few years, injection vul-
nerabilities have become primary target
for remote exploits.

Author discovered the new approach for
defending that exploits. Taint-tracking
is the name of that approach. Taint
propagation by passively observing the
inputs and outputs of the protected
application.

• Angelo Eduardo
Nunan.

• Eduardo Souto.

Advanced features in web browser in-
crease the user and increased security
risks and attacks since they allow mali-
cious codes injection.

This paper focus automatic classifica-
tion of XSS attacks on web pages by ex-
tracting and predicting features of web
document content on URL. Naive Bayes
and SVM classifier techniques used in
this paper.

• S.Krishnaveni.

• K.Sathiyakumari.

When a security mechanism is failed
then the user may download malicious
code from a trusted web site. In this
case, the malicious script is contracted
to full access with all assets belonging
to that legitimate web site. These types
of attacks are called Cross-Site Script-
ing (XSS) attacks.

Finding the malicious web pages is a
difficult task for the security team of
the web application. In this paper clas-
sification of XSS attacks through some
techniques like data mining, documenta-
tion scanning. From web pages features
are extracted and then data is scanned
using Naïve Bayes algorithm.

• Bhanu Prakash Gop-
ularam.

• N. Nalini.

Mostly the attacks are classified as per-
sistent and non-persistent attacks.

In this paper, Author mentioned some
libraries for maintaining the security
of the web applications. The secu-
rity library like OWASP, ESAPI would
help web applications to handle security
risks using standardized methods.

2.1 Related Work 7

In the above table, we have explained all the work has been done on this field. Their
ideas, proposed solution all are mentioned in the table.

Proposed Solution: As we have mentioned above in a tabular form, the problems
and there solutions provided or proposed by other Authors and researchers. They all are
fully experts in their field. But according to our proposed solution, those solutions are
more expensive and they need more powerful system for their operations. Our Solution
is free for all web application users, easy to understand, and user friendly. In our project,
we classified the data through Naive Bayes machine learning algorithm. All incoming
requests will be checked by our machine learning model and if there is any problem in
the request firewall will block the request (Cross Site Scripting Attack) and maintain the
web application security. Data Acquisition, Feature Extraction, Classification are the main
modules in our project.

Chapter 3

Requirement Specifications

3.1 Proposed System

The system we have proposed would be a Linux based Application that will be used as
a security module in NGINX. In our proposed system, the user enters the data in given
fields, that could be a login ID, password or anything which is required by the particular
application being run on the server. That entered data will be filtered through Firewall
before it reaches the web application. If the traffic is marked not harmful it is then passed
to the web application. This filtration mechanism is performed through machine learning.
Classification will be performed through a labeled data-set which will be obtained from
preprocessing the log file generated by the server. After that machine learning model will
be trained using that data and web requests will be classified into two categories and they
are spam or not spam. As the time passes more data will be available and we can use that
data to frequently train our model to improve its performance.

3.2 Existing System

Current web application firewalls are mostly signature based firewalls. They use regular
expression matching to identify malicious traffic. To use them we’ve to define signatures
of known attacks so that firewall can match against those rules and block them. This
way of operation is slow and produce high overheads, as there can be millions of attack
signatures. Due to memory and other limitations we can also not define all possible
combinations of attack signatures. On the other hand, they are also hard to install and
configure, because a lot of manual configuration is required for setting attack signatures.
However, our proposed system does not need any manual configuration, user does not need
to define attack signatures because we use machine learning to classify the traffic.

8

3.3 Requirement Specifications 9

3.3 Requirement Specifications

In requirement specification, we must specify functional and non-functional requirements
of our system. Functional and non-functional requirements of our proposed system is
given below.

3.3.1 Functional Requirements

Functional requirements specify what inputs are given to the system and what corre-
sponding output is produced and how it behaves on input. Following are the functional
requirements of our system:

• User installation script (makefile).

• User will have option to upload their own training data.

• Perform model evaluation.

• Script for manual training of model from user side.

• Configuration file to turn on or off the software as NGINX module.

• A trained model that will perform prediction of traffic.

3.3.2 Non-Functional Requirements

Non-functional requirements are the requirements that are mentioned to grade system
performance. The system can work without them, but they can increase the performance
of the overall software application. Below are our non-functional requirements.

1. Availability:
Can be easily turned on or off from the configuration file.

2. Efficiency:
Our focus for this module to be efficient, for that only the minimum required part is
coded in python. Rest is coded in C.

3. Usability:
This NGINX module is very easy to use since it requires no manual further configu-
ration from its user.

4. Robustness:
Our module will recover from NGINX crashes since servers are prone to crashes we
make sure it come back to its normal operation after a restart.

10 Requirement Specifications

5. Reliability:
Sinceuser can also perform manual training of the model, but our default data set
provides 80 % plus positive results.

3.4 Use Cases

A use case is a list of actions or events which define the interaction between the actors and
system to achieve a goal. The main use case diagram of our system is shown in 3.1 The
actors in this use-cases are the persons who will be using the system.

Run Install
Script

Load Training
traffic Set

System User

Convert Raw Data
to Usefull String

Extracting Featuring
Using Frequency Count

Training the Model

Load Testing Data

Evaluate

Put in production

Figure 3.1: Main Use Case Diagram

The individual use cases are presented below, starting from figure 3.2 to figure 3.9 with
their respective specifications table.

3.4 Use Cases 11

Table 3.1: Main Use Case

Use case ID UC-1
Title The Main Use Case Diagram of the Sys-

tem.
Description Shows the whole working of the Sys-

tem.
Primary Actor System and user.
Pre-Condition System is Installed properly
Post-Condition Entered Data is fully checked
Success Scenario Entered Data is normal.
Exceptions Data is not normal.
Assumptions User know how to enter the data.

System User

Run Install script

Figure 3.2: Install Script

In figure 3.2 shows the system gets the command or data from the user and install the
script. Detail is in the Table below.

Table 3.2: Install Script

Use case ID UC-2
Title Run Install Script
Description Get data from user and Run install

Script in system.
Primary Actor System and User.
Pre-Condition Training data Should be Stored in sys-

tem folder.
Post-Condition System is installed as desired.
Success Scenario Application Installation.
Exceptions Data is not normal.
Assumptions User don’t know how to enter the data.

12 Requirement Specifications

System User

Load Training Set

Figure 3.3: Load Training Traffic Set

After the installation, the use case figure 3.3 Load the training set to train the Model.

Table 3.3: Load Training Traffic Set

Use case ID UC-3
Title Load Traffic set
Description After the install script training traffic is

loaded.
Primary Actor System and User.
Pre-Condition Training data Should be Stored in sys-

tem folder.
Post-Condition Data set loaded for the feature extrac-

tion.
Success Scenar io User’s input is normal data.
Exceptions Data is not normal.
Assumptions User know how to enter the data.

System

Convert Raw Data

into Useful Data

Figure 3.4: Convert Raw Data into Useful Data

After the Training Set, Conversion is performed in figure 3.4. System convert the Raw
data into useful data. Detail in table below.

3.4 Use Cases 13

Table 3.4: Convert Raw Data into Useful Data

Use case ID UC-4
Title Convert Raw data into useful data.
Description Raw input data is converted to useful

data.
Primary Actor System.
Pre-Condition Training data is loaded into the applica-

tion.
Post-Condition Useful data is extracted.
Success Scenario Useful data.
Exceptions Data is not normal.
Assumptions User know how to enter the data.

System

Extracting Features

using Frequency Count

Figure 3.5: Extracting Featuring

It is an individual use case 3.5 of the system. Find the frequency of the data.

Table 3.5: Extracting Features Through Frequency Count

Use case ID UC-5
Title Extracting featuring.
Description Extracting the features from useful data.
Primary Actor System.
Pre-Condition Availability of useful data.
Post-Condition Features extracted.
Success Scenario Features Set.
Exceptions Data is not normal.
Assumptions User know how to enter the data.

14 Requirement Specifications

System

Training the Model

Figure 3.6: Training the Model

After the frequency, we train the model in 3.6 to check the probability of the data.

Table 3.6: Model’s Training

Use case ID UC-6
Title Training the Model.
Description System is trained through extracted fea-

tures.
Primary Actor System.
Pre-Condition Extracted useful features.
Post-Condition Trained model.
Success Scenario Trained model.
Exceptions Data is not normal.
Assumptions User know how to enter the data.

System User

Load Testing Data

Figure 3.7: Load the Testing Data

After the data occurrences of data probability, we will test the data in 3.7. Detail is
in table.

3.4 Use Cases 15

Table 3.7: Load the Testing Data

Use case ID UC-7
Title Load testing data.
Description System Load the testing data.
Primary Actor System and User.
Pre-Condition Training data should be stored in system

folder.
Post-Condition Evaluation.
Success Scenario Test data loaded and feature extracted.
Exceptions Data is not normal.
Assumptions User know how to enter the data.

System

Evaluate

Figure 3.8: Evaluate

After that in 3.8 system will evaluate whether the input is malicious or normal.

Table 3.8: Evaluate

Use case ID UC-8
Title Evaluate.
Description Evaluate
Primary Actor System.
Pre-Condition Training data set with features ex-

tracted.
Post-Condition Evaluation result.
Success Scenario Evaluation result is 90% or above.
Exceptions Data is not normal.
Assumptions User know how to enter the data.

16 Requirement Specifications

System

Put in Product

Figure 3.9: Product

The last use case of our system is Put in product 3.9

Table 3.9: Put in production

Use case ID UC-9
Title Put in Production.
Description Model is than integrated with NGINX.
Primary Actor System.
Pre-Condition Model evaluates to 90% and above.
Post-Condition Model is behaving as expected.
Success Scenario Successful filtering of attacks.
Exceptions Data is not normal.
Assumptions User know how to enter the data.

Chapter 4

Design

This chapter is related to architecture and design. There are three phases of our project.
There are three basic modules of our project are.

• Load Traffic.

• Labelled Traffic.

• Firewall.

4.1 System Architecture

System architecture is very important component for the representation of the application
because it’s a high level logical representation of any application and it’s shows what are
the components of the system and how they relate to each other. In figure 4.1 the System
architecture of our application is shown which is actually a web application firewall.

Load Traffic

Firewall

Labelled

Traffic

Desktop

Application

System

Figure 4.1: System Architecture

17

18 Design

Our system architecture has four major components i.e. user’s input, load traffic,
firewall, and labelled traffic. Our system doesn’t need any external database like SQL etc.
Data set is stored in a log file for feature extraction.

4.1.1 Design Methodology

Our system’s methodology is expressed in figure 4.2 where two separate independent
modules are working. First the training data set of sample as a training web traffic will be
loaded and their feature vectors will be stored into the system. Now they will be available
for matching.

Training Web

Traffic

Conversion to

Useful Data

Features Extraction

Features Vector

Testing Web

Traffic

Conversion to

Useful Data
Model

Evalution

Label Web Traffic

Figure 4.2: Diagram of the Methodology of the Application

4.2 High Level Design

This section describes in further detail elements discussed in the previous section. In Figure
4.4 shows the data flow diagram of the application. Browser send request to NGINX web
server and from web server data pass through our firewall. Working is in Figure.

Following are the different views of high level design.

4.2 High Level Design 19

Browser

NGINX
Web
Server

HTTP
Web
Request

Firewall

Log File Console

Figure 4.3: DFD diagram of Project

4.2.1 Conceptual or Logical Design

It shows high level work flow between different components of the system and its modules.
It also describes how users will be influenced with it. The figure 4.4 describes the
components of the modules and their relationship with the log file and within modules.
Package Diagram of our application is given below:

4.2.2 Process

This is basic work flow of the system. It describes the run time view of the system. It
shows the interaction of user with the system and inter-system interaction of different
subsystems. In figure 4.5 shows the detailed process of interaction between the different
components of the application.

20 Design

Classifier

Classifier

∙ Feature Extraction
∙ Feature Vector Training

∙ Matching Features vector

∙ Load Data
∙ Manual Segmentation

∙ Component Redrawing

Figure 4.4: Package Diagram of the Application

Apache Data Conversion
Firewall

Classifier
Application Data

User Browser

Web request

Harmful Data

Web request
Feature Vector

Not harmful

Not harmful

Figure 4.5: Sequence Diagram

In process stage there is a Class figure 4.6 that shows the links between the classes
of our system and their functionality in different modules.

4.2 High Level Design 21

Data Conversion

getRawdata()

convertRawdata()

Firewall/Classifier

ModelTraining()

Validation()

LabelTraffic()

Appache

RecvRequest()

ForwardtoFirewall()

RecvLabel()

FrwdtoApporDatabase()

Model

Recvrequest()

ConvertReq()

Data

StoreFurther()

TrainingData()

AssignLabel

Figure 4.6: Class Diagram of the Application

4.2.3 Physical

Physical diagrams give the physical view of the system, external components and how they
are connected with each other. Deployment Diagram of our application is given in figure
4.7:

Load Traffic Labelled Traffic

Firewall

CLASSIFIER

User

Figure 4.7: Deployment Diagram of the Application

4.2.4 Security

As firewall is itself a security application so we do not need any external security mecha-
nism. However, application user must make sure that firewall is only being downloaded
from the official source because a small tampering with the source code can lead to big
issues for web application developers. Normally all the data is also secured because of
Linux file permissions, and it is recommended to set a strong root password for the Linux
machine.

22 Design

4.3 External Interfaces

External interface that deals with the user of this application is command line, as it is
a Linux based application it does not need any graphical user interface, everything is
managed through the command line. Our application has following external interfaces
requirements.

• Linux Server to run the firewall.

• Remote management through Putty on windows.

• Remote management through the console on Linux.

• Internet connected is required to access the server machine remotely.

Chapter 5

System Implementation

In computer science, system implementation is a process of defining how the system
should be built, its physical and system design. It is the process of realization of an
application, execution of a plan, ideas, algorithm, design, and model etc. This system has
been implemented on Linux and it is a web application firewall that use machine learning
to detect malicious traffic. Our system use training data specific to each server, on which it
gets trained. In figure 5.1 shows the Architecture view of the system.

5.1 System Architecture

The high-level logical representation of the application is shown in System Architecture.
In System Architecture, the components of the system and how they are related to each
other are shown in pictorial form. How the user interacts with the system and how the
system responds to some valid and invalid inputs will also be discussed in this paragraph.
The development environment of the application is also discussed in System Architecture.
The system is Web Application firewall for Linux based server, can be used with one
server instance at a time. The architecture of our system is clearly described in figure
5.1 as discussed earlier Our Application is a firewall for the web applications. Once it
is installed there is no need for any configuration and no need of any extra work for the
web site security team related to XSS attacks. Our application is automatically installed
through auto-install script provided with the install package and becomes fully functional
provided there is enough data available on the server for model training. Our system does
not need any external database like MySQL, Oracle database. The four major components
of our System is Load Training Traffic, Clean the traffic, Train the model and classify the
requests. As soon as the model is trained for classification, we enter the second phase of
the application. In the second phase, we sniff each web request coming towards the server
and put a label, whether it is a malicious request or not.

23

24 System Implementation

Load Traffic

Firewall

Labelled

Traffic

Desktop

Application

System

Figure 5.1: System Architecture

5.2 System Internal Components

The system has four major components and every component is linked with each other. Four
internal components of our system are Data Acquisition, Feature Extraction, Classification,
and Logging. How these components are linked and its processes are shown in detail in
figure 5.2 as a System internal component diagram.

Data Acquisition

Pre-Processing

Loading labelled data

Logging

Sample of training data

Classification

Distance Measure

Bayes' theorem

Feature Extraction

vectorization

Figure 5.2: System’s Internal Diagram of Application

5.3 Tools and Technology Used 25

5.2.1 Data Acquisition

As soon as the install script is initiated our application start accumulating website traffic of
that specific server in a log file in a pre-defined format. Once the enough data is collected
it then triggers the machine learning phase. The log file is in a ModSecurity log file format,
so that format of a log is same on different kind of servers.

5.2.2 Feature Extraction

As soon as the data is accumulated, we then convert the raw HTTP traffic and filter useless
data from web requests. As this is a case of text classification we use Vectorizer for feature
extraction, cleaned web requests are then passed to Vectorizer and it extracts the features
based on the frequency of each word present in each document. We also have a predefined
data set of XSS traffic which we have used to extract features of a malicious traffic.

5.2.3 Classification

Classification is the core of this application, once we’ve data available from the server we
train our model. Now classification is done based on the words a certain web request can
contain. If the frequency of words is closer to the requests of malicious traffic the traffic is
labeled as malicious. For example, if web request contains the word “script” 4-5 times it
means it is not a good web request. We’ve used Naive Bayes as classier for this problem
because it is a good fit for text classification. With normal classification, we have had some
bad results, so we’ve used a manual enhancer, which enhances the spam of a request if it
contains some words which were also present in the malicious traffic.

5.3 Tools and Technology Used

The tools and technology we are using in our system are:

5.3.1 Pycharm

PyCharm is an Integrated Development Environment(IDE) from Czech company Jet Brains
used for Python programming language. It’s used for unit testing, graphical debugger and
supports Web development. PyCharm is cross-platform, supports Windows, MacOS, and
Linux versions. Our application is also a Web Application Firewall and language which is
used for development is Python, so, we have also used Pycharm for the development of
our system.

26 System Implementation

5.3.2 Clion

CLion. (pronounced "sea lion") is also cross-platform. It’s used for languages C and
C++ Integrated Development Environment(IDE) for Linux, OS X, and Windows. Our
application has a module in C language, so we used CLion for the development of our
system.

5.3.3 CPNginx

It’s a cPanel NGINX integration plugin. We needed this plugin so that NGINX can be
integrated with cPanel server. After that, we run our install script to combine NGINX with
the firewall module.

5.3.4 NGINX

It’s an open source software for web serving, reverse proxying, caching, load balancing,
media streaming. It also works for a proxy server for Emails. Our system has a server so
for the proxy works of the web server we used NGINX in our system.

5.3.5 Apache

It’s server. It’s a world’s most used web server software. Our system used it as a server.

5.3.6 Anaconda

It’s a freemium open source for the python and R programming language.

5.3.7 Naive Bayes Classifier

We used machine learning Algorithm for classification. In machine learning, Naive Bayes
classifiers are a family of simple probabilistic classifiers based on applying Bayes’ theorem
with strong (naive) independence assumptions between the features.

5.4 Processing Logic Flow 27

5.4 Processing Logic Flow

In figure 5.3 our system logic flow starts from the process of loading Raw HTTP request
clean the request and make a vector. After the feature extraction, data is classified based
on those features. After that process we got the results and maintain the log file for future
requests.

LOG FILE

Figure 5.3: Processing Logic Flow Diagram of Application

Chapter 6

System Testing and Evaluation

6.1 System Testing and Evolution

In this chapter, we discuss the system performance and evaluation. Evaluation of sys-
tem/application is done by using various system testing techniques. This is the main part of
an application as it provides validation about working of the systems and the requirements
of the system. To find out if any errors exist or proper exception handling is included. We
will discuss a few testing techniques in this chapter. It is a very important component of any
application development because we get to know how much of the original specification
is met. And we get to find any errors and fix them in a way so that they won’t create any
issues while application starts running in a production environment. We will discuss the
testing that we’ve applied on our application in this chapter.

6.2 Command Line Testing

Our web application firewall is a Linux based application. As it is installed and run through
command line we must make sure proper command line testing is in place. Figure 6.1
show the default run of the install/un-install script.

[Username@username pymod]$ python setup_fw.py install

Usage: setup_fw.py [-h][-p PREFIX] [-n NGINXBINARY] [-c CONF] [-l LOG]

[-a AUDITLOG] Install Plain

setup_fw.py: error : too few argument

[Username@username pymod]$

Figure 6.1: Command Line

28

6.3 Functional Testing 29

As we can see this script have few required parameters due to which we’ve been dis-
played with an error saying: "too few arguments". Install script has two mandatory
arguments.

• Install or un-install.

• Install type.

The first argument is whether you need to install or un-install and the second argument is
plain or CPNGINX install type.

[Username@username pymod]$ python setup_fw.py install

Usage: setup_fw.py [-h][-p PREFIX] [-n NGINXBINARY] [-c CONF] [-l LOG]

[-a AUDITLOG] Install Plain

setup_fw.py: error : too few argument

[Username@username pymod]$

Figure 6.2: One Argument

In figure 6.2 we’ve supplied one argument but the script still demands one more ar-
gument before it starts running.

[Username@username pymod]$ python setup_fw.py install cpnginx --

pre�x=/home/username/seclearnfw

###

Please install CPNginx

##

[User@User pymod]$

Figure 6.3: All Arguments

In figure 6.3 we’ve supplied all mandatory arguments plus one optional argument. But
the script first checks if our requirements are met or not. As CPNginx is not installed, it
displays the text that CPNginx should be installed first.

6.3 Functional Testing

We’ve started our testing with functional testing. In functional testing, we’ve tested
our application in various conditions of the server. Different installation scenarios are
performed, we’ve also performed white box, black box and integration testing.

30 System Testing and Evaluation

6.3.1 Run Installer

Software: Firewall Setup Script.
Modulation: Installing the Firewall.

First test case is the installation of our application without its pre-requisite CPNginx not
installed. As on this stage CPNginx is not installed so it should prompt for the installation
of CPNginx and does not continue the installation of firewall.

Table 6.1: Test Case 1:Run

Test case ID TC-01
Description The installation of our application without its pre-

requisite CPNginx not installed. If not then install
the CPNginx

Application for Web Application users.
Requirements CPNginx is not installed.
Steps to be Taken Install CPNginx.
Expected Results Prompt for CPNginx installation.
Actual Result Firewall not installed.
Status Success
Remarks N/A

6.3.2 Run Installer

Software: Firewall Setup Script.
Modulation: Installing the Firewall.
Second test case is the installation of our application with its pre-requisite CPNginx
installed. As on this stage CPNginx is installed so it should successfully install the firewall
application.

Table 6.2: Test Case 2:Run

Test case ID TC-02
Description On this stage CPNginx is installed so, it should suc-

cessfully install the firewall application.
Application for Web Application users.
Requirements CPNginx is installed.
Steps to be Taken Run install script.
Expected Results Firewall successfully installed
Actual Result Firewall installed.
Status Success
Remarks N/A

6.3 Functional Testing 31

6.3.3 Run Installer

Software: Firewall Setup Script.
Modulation: Installing the firewall.
User can also run even if the firewall is already installed. So, script must not re-run the
install, it should first check if firewall is already installed or not. Because re-installing the
firewall on already installed machine can create problems.

Table 6.3: Test Case 3:Run

Test case ID TC-03
Description if the firewall is successfully installed then don’t run

the script.
Application for Web Application users.
Requirements Firewall is already installed.
Steps to be Taken User should run the installer.
Expected Results Prompt that firewall is already installed.
Actual Result Firewall is installed.
Status Success
Remarks N/A

6.3.4 Setup Connection:

Software: Setup Connection Script.
Modulation: Setting Up connection.
Once the firewall module is installed on NGINX, it will start sending traffic to setup
connection script through Unix domain sockets, so we’ve to run this setup connection
script which will train the model and setup Unix domain socket for accepting web requests.

Table 6.4: Test Case 4:Setup

Test case ID TC-04
Description If the firewall is successfully installed then we’ve to

run this setup connection script which will train the
model and setup Unix domain socket for accepting
web requests

Application for Web Application users.
Requirements Firewall is already installed.
Steps to be Taken User should run the installer.
Expected Results Start accepting connections.
Actual Result Unix domain socket accepting connections.
Status Success
Remarks N/A

32 System Testing and Evaluation

6.3.5 Setup Connection

Software: Setup Connection Script.
Modulation: Setting Up Connection.
Setup connection script can also run even if the firewall is not installed, even though it is
fine to run setup connection script. So, it should prompt to first install firewall.

Table 6.5: Test Case 5:Setup

Test case ID TC-05
Description Setup connection script .
Application for Web Application users.
Requirements Firewall is already installed.
Steps to be Taken Run the setup connection script.
Expected Results Start accepting connections.
Actual Result Unix domain socket accepting connections.
Status Success
Remarks N/A

6.3.6 Un-install Firewall

Software: Un-install Script.
Modulation: Un-installing Firewall.
We also have a software un-install script, on Linux we’ve to manually un-install script.
That is why a separate un-install script is needed to un-install the firewall. There can be
many possible errors while un-installing which should be taken care off. It should check if
firewall is already installed or not, and make sure all related files are completed removed
and old setup is back as it was before the installation of firewall.

Table 6.6: Test Case 6: Un-install

Test case ID TC-06
Description We also have a software un-install script, on Linux

we’ve to manually un-install script.
Application for Web Application users.
Requirements Firewall is already installed.
Steps to be Taken Run the un-install script.
Expected Results Firewall un-installed.
Actual Result Firewall is successfully un-installed.
Status Success
Remarks N/A

6.4 Software Performance Testing 33

6.3.7 Un-install Firewall

Software: Un-install Script.
Modulation: Un-installing Firewall.
Un-install script can also be executed even if the firewall is not installed and can delete
potentially important Linux related files, so it should only run if the firewall is properly
installed.

Table 6.7: Test Case 7: Un-install

Test case ID TC-07
Description Un-install script can also be executed even if the

firewall is not installed.
Application for Web Application users.
Requirements Firewall is not installed.
Steps to be Taken Run the un-install script.
Expected Results Prompt firewall is not installed.
Actual Result Prompted that firewall is not installed.
Status Success
Remarks N/A

6.4 Software Performance Testing

Performance testing checks the overall performance of the software application. In this
testing, we’ve taken data from two production servers and ran the metrics accuracy test.
We will see that how these two data sets performed with our model.

6.4.1 System Accuracy Percentage Rate

Accuracy percentage is used to check how our machine learning model performed on the
training data.
Data from server 1: Without Spam Enhancement: 91%
With Spam Enhancement: 96 %
Data from server 2: Without Spam Enhancement: 95%
With Spam Enhancement: 99%

6.5 Exception Handling

Exception handling helps the application to remain unaffected in case the normal flow of
the program is not executed. Since the firewall is a network application Exception handling
was a must, exception handling done in our system is explained below.

34 System Testing and Evaluation

• If for some reason application is not able to obtain a Unix domain socket, then normally
it throws an error. We have enclosed it in a try/catch block to avoid any unexpected
behavior.

• If any of the required files are not present (Data-set file, NGINX Configuration files)
application should be able to produce their own copies from predefined formats.

• When data transformation is going on, there can be some data which is binary or not
UTF-8, for that we’ve first converted every piece of data in UTF-8 format manually,
and if conversion is not successful we discarded the input.

• On the NGINX module part of the application, we had to check if any IO operations
are successful or not. Files are being opened properly because in C there is very less
unbuilt testing so we had to manually check if everything is in order.

6.6 Usability Testing

Usability testing is by the user of the application. That how easy was it to install, use and
un-install the application. We also get to know if application met the user requirements.

6.6.1 User Friendly Command Line Interface

Command line interface make it easy for the first-time user, it provides an easy to under-
stand help message if any of the required inputs are missing.

6.6.2 Easy to Use

Our Firewall is very easy to use, unlike other firewalls there is no need to define signature
rules because it works on machine learning to detect malicious traffic.

6.6.3 Easy to Learn

It is very easy to learn because most of the hard work is done by the install script. Any
new or old user can get used to it easily.

Chapter 7

Conclusions And Future Work

The project " Cross Site Scripting (XSS) Web Attack Detection by Machine Learning " is
designed for the help of Web Applications users/developers to insure their web application
security through automatic system. This application is very useful for the web applications
users/developers and computer sciences students. It has been great learning experience for
us as developers specially the module in which we used machine learning. Our application
is very simple and easy to understand for common web application users. People can easily
handle this application because it is very user-friendly, hence there is no need to have any
special training and no need of any extra work to install that application as installation is
performed through a single command. After working on this project, we learned about
different kind of possible attacks a web application can face and how easy it is for an
attacker to find a loophole and steal important information. It is a vast field and with the
passage of time our application (machine learning mode) will get more mature and we will
expect models which result in the good classification of attacks.

7.0.1 Future Enhancements

Currently, this firewall only stops XSS (Cross Site Scripting) attacks which are only one of
the many web attacks present these days. In future, we are planning to train models on
SQL Injection Attacks, DOS (denial-of-service) Attacks and many other web attacks. We
are also looking to develop this module not only for Apache, NGINX but for other servers
like Caddy Web server and Lite Speed Web. In future, we would also like to develop a GUI
based log file analyzer where a user can easily analyze log files because it is hard to analyze
log files for a naive web server user. Not only on the web server level, we can also create a
firewall of this type on network interface level, that may require a lot of time and testing
but it can be done and in future, we may try to implement it on interface level. Currently,
our machine learning model depends on the data collected from the server. In future, we
are planning to gather data from all the servers it is installed on (normal and malicious data)
to make it data independent as well. That could be a really great improvement because if

35

36 Conclusions And Future Work

we’ve malicious data from various sources it can improve the accuracy of the model as
well.

Bibliography

[1] Fernando Magno Quintão Pereira Roberto S. Bigonha Andrei Rimsa,
Marcelo D’amorim. "efficient static checker for tainted variable attacks",
February. Cited on p. 1.

[2] Ahmed Toumanari. El Moussaid, Nadya ElBachir. Web application attacks detection:
A survey and classification., nov 2014. Cited on p. 5.

[3] K. Sathiyakumari. Krishnaveni. Multiclass classification of xss web page attack using
machine learning techniques., November. Cited on p. 4.

[4] Hee Beng Kuan Tan Lwin Khin Shar. "predicting common web application vulnerabil-
ities from input validation and sanitization code patterns, ", September. Cited on
p. 1.

[5] Nuno F. Neves Medeiros, Ibéria and Miguel Correia. Automatic detection and cor-
rection of web application vulnerabilities using data mining to predict false positives.
Cited on p. 4.

[6] Angelo Eduardo Nunan. Automatic classification of cross-site scripting in web pages
using document-based and url-based features,. Cited on p. 4.

[7] Nalini N. Opularam Prakash Bhanu. Cross site scripting security vulnerabilities and
risk mitigation using enterprise security api for web-apps. Cited on p. 5.

[8] R. Sekar. An efficient black-box technique for defeating web application attacks, nov
2009. Cited on p. 3.

37

	Front Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Project Background
	1.2 Problem Description
	1.3 Project Objectives
	1.4 Project Scope

	2 Literature Review
	2.1 Related Work

	3 Requirement Specifications
	3.1 Proposed System
	3.2 Existing System
	3.3 Requirement Specifications
	3.3.1 Functional Requirements
	3.3.2 Non-Functional Requirements

	3.4 Use Cases

	4 Design
	4.1 System Architecture
	4.1.1 Design Methodology

	4.2 High Level Design
	4.2.1 Conceptual or Logical Design
	4.2.2 Process
	4.2.3 Physical
	4.2.4 Security

	4.3 External Interfaces

	5 System Implementation
	5.1 System Architecture
	5.2 System Internal Components
	5.2.1 Data Acquisition
	5.2.2 Feature Extraction
	5.2.3 Classification

	5.3 Tools and Technology Used
	5.3.1 Pycharm
	5.3.2 Clion
	5.3.3 CPNginx
	5.3.4 NGINX
	5.3.5 Apache
	5.3.6 Anaconda
	5.3.7 Naive Bayes Classifier

	5.4 Processing Logic Flow

	6 System Testing and Evaluation
	6.1 System Testing and Evolution
	6.2 Command Line Testing
	6.3 Functional Testing
	6.3.1 Run Installer
	6.3.2 Run Installer
	6.3.3 Run Installer
	6.3.4 Setup Connection:
	6.3.5 Setup Connection
	6.3.6 Un-install Firewall
	6.3.7 Un-install Firewall

	6.4 Software Performance Testing
	6.4.1 System Accuracy Percentage Rate

	6.5 Exception Handling
	6.6 Usability Testing
	6.6.1 User Friendly Command Line Interface
	6.6.2 Easy to Use
	6.6.3 Easy to Learn

	7 Conclusions And Future Work
	conclusion
	7.0.1 Future Enhancements

