ARSENIC CONTAMINATION AND MOBILIZATION ACROSS ALLUVIAL PLAINS OF DISTRICT GUJRAT, PAKISTAN

 $\mathbf{B}\mathbf{y}$

SALMAN MAQSOOD WALEED ABBAS KHAN WALEED AHMAD

Department of Earth and Environmental Sciences Bahria University, Islamabad

2017

ARSENIC CONTAMINATION AND MOBILIZATION ACROSS ALLUVIAL PLAINS OF DISTRICT GUJRAT, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfilment of the requirement for the degree of BS in Environmental Sciences

SALMAN MAQSOOD WALEED ABBAS KHAN WALEED AHMAD

Department of Earth and Environmental Sciences Bahria University, Islamabad

2017

ABSTRACT

The current research was conducted to investigate the impacts of irrigation well water on the irrigation soil quality of the flood plain areas of Gujrat district. During October 2016, a total of 15 wells samples were collected along the flood plain areas of River Chenab and Jehlum which are located at Gujrat district. The samples were analysed on-sites for Physio-chemical parameters (That is PH electrical conductivity, sulphates, Nitrates, Fluorides, Iron and Arsenic). All these parameters were analysed on site with the help of portable instruments. The results were compared with the standard values of WHO Permissible limit for irrigation water; also NEQS (National Environmental Quality Standards). From the result it was found that Physical parameters (i.e. Arsenic and Iron), some of them were well above the standards. Therefore, it was concluded that some of the samples were not found to be fit for the irrigation purposes. This was because Arsenic is transferred from irrigation water and paddy soil to different parts of the rice plant with different patterns of distribution. Thus, ground water enriched with Arsenic affects the paddy soil and rice crops. By applying various statistical techniques, we concluded that irrigation well water contaminated with Arsenic has a profound effect on the irritation soil of the flood plain areas of Gujrat District.

ACKNOWLEDGEMENT

In the name of Allah, the Most Beneficent, the Most Merciful. All praises to Him for the strength and blessings endowed upon us in completing this thesis.

We are thankful to our supervisor Mr.Asif Javed, Senior Assistant Professor; Earth and Environmental sciences Department, Bahria University, Islamabad, for his valuable guidance. His constructive comments and suggestions throughout the research work have contributed to the successful and timely completion of this research study.

We would like to thank Professor. Dr. Tahseenullah Khan, Head of Department Earth and Environmental Sciences Department Bahria University, Islamabad for his constant encouragement. We would also like to thank Mr. Khubaib Abuzar, Senior Assistant Professor Earth and Environmental Sciences Department Bahria University Islamabad his assistance in research work.

Our special thanks to Mr. Imtiaz Lab attendant, Earth and Environmental Sciences Department, Bahria University, Islamabad for the utilization of their laboratory amenities and Mr. Zakir Rumi MS student of Earth and Environmental Sciences Department, Quaid e Azam University, Islamabad. Last, but certainly not the least we would like to convey our sincere gratitude to our brothers and sisters for their constant support, prayers and encouragement.

ABBREVIATIONS

WHO World Health Organization

RMS Rocky mountain system

DCH Dhaka Community Hospital

DNA Deoxyribonucleic acid

ITS Industrial testing system

UNICEF United Nations International Children's Emergency Fund

FAO Food and Agriculture Organization

GIS Geographic information system

PMD Pakistan meteorological department

SD Standard deviation

SPI Standardized precipitation index

USGs United states geological survey

WMO World meteorological organization

CONTENTS

		Page
ABS'	TRACT	i
ACK	ii	
ABB	BREVIATIONS	iii
FIGU	URES	V
TAB	BLES	vii
	CHAPTER 1	
	INTRODUCTION	
1.1	Background	1
1.2	Occurrence of arsenic	1
1.3	Arsenic in water	2
1.4	Mobilization of arsenic	2
1.5	Water scarcity	2
1.6	Contamination of water with arsenic	3
1.7	Arsenic in ground water	4
1.8	Arsenic around the world	5
1.9	Health problems caused by arsenic	10
	1.9.1 Short term exposure	10
	1.9.2 Long term exposure	10
1.10	Objectives	13
	CHAPTER 2	
	MATERIALS AND METHODS	
2.1	Study area	14
2.2	Methodology	15
	2.2.1 Arsenic	15
	2.2.2 Iron	16
	2.2.3 Nitrate	16

	2.2.4	Sulfate	17
	2.2.5	рН	18
	2.2.6	EC(electrical conductivity)	18
		CHAPTER 3	
		RESULTS AND DISCUSSIONS	
3.1	Statis	stical analysis	19
3.2	Spati	al distribution of arsenic in irrigation water of District Gujrat	20
3.3	Wate	er sample collection points	20
3.4	Wate	er chemistry of irrigation water	21
3.5	Arse	nic adsorption and precipitation	24
3.6	Relat	ion between depth and arsenic in irrigation tube well water	25
3.7	Spati	al distribution of arsenic in soil on map	27
3.8	Spati	al distribution of arsenic in paddy soil	29
CONCLUSION		37	
RECOMMENDATIONS		38	
REF	REFERENCES		39

FIGURES

		Page
Figure 2.1.	Study area of District Gujrat.	15
Figure 3.2.	Spatial distribution of arsenic in irrigation water of District	20
	Gujrat.	
Figure 3.3.	Water samples collection points.	20
Figure 3.6.	Relation between depth and arsenic in irrigation tube well	25
	water.	
Figure 3.7(a).	Spatial distribution of arsenic in soil samples of District	27
	Gujrat.	
Figure 3.7(b).	Earth view of spatial distribution of arsenic in soil.	28
Figure 3.8(a).	Concentration of arsenic (mg/kg) in village Jaleelpur District	29
	Gujrat.	
Figure 3.8(b).	Concentration of arsenic (mg/kg) in village Nathithiba-1,	30
	District Gujrat.	
Figure 3.8(c).	Concentration of arsenic (mg/kg) in village Nathithiba-2	30
	District Gujrat.	
Figure 3.8(d).	Concentration of arsenic (mg/kg) in village Kathara Chenab-1	31
	District Gujrat.	
Figure 3.8(e).	Concentration of arsenic (mg/kg) in village Kathara Chenab -	32
	2, District Gujrat.	
Figure 3.8(f).	Concentration of arsenic (mg/kg) in village Kathara Chenab-	33
	3, District Gujrat.	
Figure 3.8(g).	Concentration of arsenic (mg/kg) in village Gulaha District	33
	Gujrat.	
Figure 3. 8(h).	Concentration of arsenic (mg/kg) in village Muhla khurd	34
	District Gujrat.	

TABLES

		Page
Table 3.1.	Statistical summary.	19
Table 3.4.	Water chemistry of irrigation water in Gujrat.	21
Table 3.5.	Standards of WHO for irrigation water.	22