## GEOTECHNICAL INVESTIGATION OF ROAD A, SECTOR F-3, PHASE 8 BAHRIA TOWN, ISLAMABAD, PAKISTAN



A thesis submitted to Bahria University Islamabad in partial fulfillment of the requirement for the degree of B.S in Geology

# JAHANGIR HAMEED FAZLI AMIN

## **MUHAMMAD AWAIS**

**Department of Earth and Environmental Sciences** 

Bahria University, Islamabad

2017

#### DEDICATION

This dissertation is dedicated to our beloved Parents with whom support and unceasing encouragement this task has been completed.

#### ABSTRACT

The study area Bahria Town Phase 8, which comprises of thick deposits of clay/alluvial cover is present. The main purpose of study is to evaluate the aggregate soil, soil's index, and engineering properties as subgrade materials is purposed for Bahria Town phase 8 in district Rawalpindi.

During field investigation different test were performed according to soil testing of the road project specification along the purposed road alignment. In-situ compaction was determined by using sand-cone method (ASTM D1556) which ranges from to 90-100 %. The grain friction analysis reveals that the gravel varies from 1 to 54 %, sand varies from 4 to 57% and silt/clays friction ranges from 33 to 92 %. The Atterberg limits data reveals that the Liquid Limit varies from 23.1 to 30.5 %, Plastic Limit 18.3 to 18.9 %. The soil in the study area was classified as A-4 using AASHTO M 145 soil classification. The Californian Bearing Ratio at 1mm" penetration ranges from 4% to 9%. Based upon AASHTO soil classification and Central Laboratory of Bahria Town road specification, the soil of area is not recommended for purposed road subgrade. But the aggregate and concrete are within the standard of AASHTO test.

#### ACKNOWLEDGEMENTS

We are very thankful to our supervisor Mr.Mustafa Yar, Senior Lecturer, Earth and Environmental Sciences Bahria University for his utmost support and guidance throughout this research project. Through their guidance and kind advice we have completed this task successfully.

Sincere thanks to Head of Department Prof. Dr. Tahseenullah khan for his support and enlightened vision.

We also extend our thanks to the staff of Central Testing Laboratory Bahria Town for their help in conducting different material tests.

We are thankful to our parents for their financial and moral support we needed to complete this task and our degree program.

#### CONTENTS

|                | Page |
|----------------|------|
| DEDICATION     | i    |
| ABSTRACT       | ii   |
| ACKNOWLEDGMENT | iii  |
| FIGURES        | ix   |
| TABLES         | x    |
| GRAPHS         | xi   |

#### CHAPTER 1

#### INTRODUCTION

| 1.1 | Introduction               | 1 |
|-----|----------------------------|---|
| 1.2 | Location and Accessibility | 2 |
| 1.3 | Locality of Bahria Town    | 3 |
| 1.4 | Purpose of work            | 3 |
| 1.5 | Methodology                | 3 |

#### CHAPTER 2

#### ENGINEERING GEOLOGY

| 2.1 | Introduction                     | 5 |
|-----|----------------------------------|---|
| 2.2 | Geotechnical Engineering         | 5 |
| 2.3 | Soil Mechanics                   | 6 |
| 2.4 | Scope of Engineering Geology     | 7 |
| 2.5 | Engineering Aspect of Study Area | 8 |
| 2.6 | AASHTO Standard                  | 9 |

#### CHAPTER 3

#### TECTONIC SETTING AND STRATIGRAPHY

| 3.1   | Tectonic Setting                                  | 12 |  |
|-------|---------------------------------------------------|----|--|
| 3.2   | Tectonic Zones                                    | 13 |  |
| 3.2.1 | Karakorum Block                                   | 13 |  |
| 3.2.2 | Main Karakorum Thrust                             | 14 |  |
| 3.2.3 | Kohistan Island Arc (KIA)                         | 14 |  |
| 3.2.4 | Main Mantle Thrust                                | 15 |  |
| 3.2.5 | Northern Deformed Fold and Thrust Belt            | 15 |  |
| 3.2.6 | Main Boundary Thrust                              | 15 |  |
| 3.2.7 | Southern Deformed Fold and Thrust Belt            | 16 |  |
| 3.2.8 | Punjab Fore Deep                                  | 16 |  |
| 3.3   | Local Geology of Islamabad and Rawalpindi         | 17 |  |
| 3.3.1 | Stratigraphy                                      | 17 |  |
| 3.3.2 | Murree Formation                                  | 18 |  |
| 3.3.3 | Kamlial Formation                                 | 18 |  |
|       | CHAPTER 4                                         |    |  |
|       | SOIL TEST                                         |    |  |
| 4.1   | Sieve Analysis for Soil (AASHTO T-27/ ASTM C-136) | 20 |  |
| 4.1.1 | Needs and Scope                                   | 20 |  |
| 4.1.2 | Apparatus                                         | 20 |  |
| 4.1.3 | Precautions                                       | 21 |  |
| 4.1.4 | Procedure                                         | 21 |  |
| 4.1.5 | Formulae and Calculations                         | 22 |  |
| 4.1.6 | Calculation of sieve analysis test result         | 22 |  |
| 4.2   | Sand Cone Method                                  | 23 |  |
| 4.2.1 | Apparatus                                         | 24 |  |

| 4.2.2 | Procedure                                | 25 |
|-------|------------------------------------------|----|
| 4.2.3 | Calculations                             | 26 |
| 4.3   | Atterberg Limits                         | 26 |
| 4.3.1 | Shrinking Limit                          | 27 |
| 4.3.2 | Plastic Limit                            | 27 |
| 4.3.3 | Liquid Limit                             | 27 |
| 4.3.4 | Plasticity Index                         | 27 |
| 4.4   | Determination of Liquid Limit of Soil    | 27 |
| 4.4.1 | Apparatus                                | 28 |
| 4.4.2 | Procedure                                | 28 |
| 4.4.3 | Precautions                              | 29 |
| 4.4.4 | Calculations                             | 30 |
| 4.5   | Plastic Limit                            | 30 |
| 4.5.1 | Apparatus                                | 30 |
| 4.5.2 | Procedure                                | 31 |
| 4.3.3 | Precautions                              | 31 |
| 4.5.4 | Calculations                             | 32 |
| 4.6   | Modified Proctor Compaction (ASTM D1557) | 32 |
| 4.6.1 | Introduction                             | 32 |
| 4.6.2 | Apparatus                                | 33 |
| 4.6.3 | Procedure                                | 33 |
| 4.6.4 | Precautions                              | 35 |
| 4.6.5 | Modified Proctor Test Lab Calculations   | 36 |
| 4.7   | CBR (California bearing ratio)           | 39 |
| 4.7.1 | Introduction                             | 39 |
| 4.7.2 | Apparatus                                | 39 |
| 4.7.3 | Procedure                                | 40 |

#### CHAPTER 5

#### AGGREGATE TEST

| 5.1   | Introduction                                         | 46 |  |
|-------|------------------------------------------------------|----|--|
| 5.2   | Sand Equivalent Test (AASHTO 176)                    | 46 |  |
| 5.2.1 | Introduction                                         | 46 |  |
| 5.2.2 | Apparatus                                            | 46 |  |
| 5.2.3 | Principle                                            | 47 |  |
| 5.2.4 | Procedure                                            | 47 |  |
| 5.4.5 | Precautions                                          | 48 |  |
| 5.2.6 | Calculation                                          | 48 |  |
| 5.3   | Los Angeles Abrasion Test (AASHTO T-96 & ASTM C-535) | 48 |  |
| 5.3.1 | Apparatus                                            | 49 |  |
| 5.3.2 | Abrasive Charge & Resolutions                        | 50 |  |
| 5.3.3 | Procedure                                            | 50 |  |
| 5.3.4 | Calculation                                          | 52 |  |
|       | CHAPTER 6                                            |    |  |
|       | CONCRETE TESTS                                       |    |  |
| 6.1   | Slump Test                                           | 53 |  |
| 6.1.1 | Apparatus                                            | 53 |  |
| 6.1.2 | Temperature and Humidity                             | 54 |  |
| 6.1.3 | Sample                                               | 54 |  |
| 6.1.4 | Procedure                                            | 54 |  |
| 6.1.5 | Precautions                                          | 55 |  |
| 6.2   | Compressive Strength Test                            | 55 |  |
| 6.2.1 | Apparatus                                            | 55 |  |
| 6.2.2 | Procedure                                            | 55 |  |
| 6.2.3 | Measurement of Dimension                             | 56 |  |

| 6.2.4      | Compressive Strength | 57 |
|------------|----------------------|----|
| 6.2.5      | Calculation          | 57 |
|            |                      |    |
| ~~~~~      |                      |    |
| CONC       | LUSIONS              | 59 |
| REFERENCES |                      | 60 |

## FIGURES

| Figure 1.1 | Demonstrates the Map perspective of Bahria Town Phase 8   | 3  |
|------------|-----------------------------------------------------------|----|
| Figure 3.1 | Tectonic map of northern Pakistan                         | 17 |
| Figure 4.1 | Sieves and sample for gradation                           | 21 |
| Figure 4.2 | Sand cone apparatus                                       | 24 |
| Figure 4.3 | Apparatus for Atterberg limit                             | 28 |
| Figure 4.4 | Determination of plastic limit at Geotechnical laboratory | 31 |
| Figure 4.5 | Preparing sample for modified proctor test                | 37 |
| Figure 4.6 | CBR mould for sample preparation                          | 40 |
| Figure 5.1 | Apparatus for Sand Equivalent                             | 47 |
| Figure 5.2 | Los Angeles machine                                       | 49 |
| Figure 6.1 | Slump Apparatus                                           | 53 |
| Figure 6.2 | Compressive Strength Machine                              | 56 |

## TABLES

# Page

| Table 2.1  | Specific test values for sub-base material                    | 9  |
|------------|---------------------------------------------------------------|----|
| Table 2.2  | Gradation of coarse aggregate material through sieve analysis | 9  |
| Table 2.3  | Classes of material for each layer                            | 10 |
| Table 2.4  | Gradation analysis of fine aggregate                          | 11 |
| Table 2.5  | Gradation Requirement of sub base material                    | 11 |
| Table 3.1  | Stratigraphic column of study area                            | 19 |
| Table 4.1  | Calculation of Aggregate Base Coarse gradation                | 23 |
| Table 4.2  | Moisture Content (FDT)                                        | 25 |
| Table 4.3  | Sand Cone method Test (FDT)                                   | 26 |
| Table 4.4  | Determination of liquid limit                                 | 30 |
| Table 4.5  | Determination of Plastic limit                                | 32 |
| Table 4.6  | Calculation of Modified Proctor Test                          | 36 |
| Table 4.7  | Standard load value                                           | 41 |
| Table 4.8  | CBR (California bearing ratio test) result                    | 42 |
| Table 4.9  | Result of dry density                                         | 42 |
| Table 4.10 | Result of moisture content                                    | 43 |
| Table 4.11 | Density C.B.R curve values for Mould No 1                     | 43 |
| Table 4.12 | Density C.B.R curve values for Mould No 2                     | 44 |

| Table 4.13 | Density C.B.R curve values for Mould No 3                | 44 |
|------------|----------------------------------------------------------|----|
| Table 5.1  | Calculation of Sand Equivalent for Aggregate base Coarse | 48 |
| Table 5.2  | Charge & Revolutions                                     | 50 |
| Table 5.3  | Determination of Los Angeles                             | 51 |
| Table 6.1  | Calculation of Compressive Strength Test                 | 58 |

## GRAPHS

# Page

| Graph 4.1 | Showing Percentage passing through sieve | 23 |
|-----------|------------------------------------------|----|
| Graph 4.2 | Showing Water Content Variation          | 30 |
| Graph 4.3 | Showing Variations in Dry Density        | 38 |
| Graph 4.4 | Curve values for mould No 1, 2, 3        | 45 |