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A B S T R A C T

In this study, we have explored numerical solution of two dimensional MHD stagnation point Williamson
fluid flow under the influence of homogeneous–heterogeneous reactions over a linearly stretched surface.
The flow is triggered by a linearly stretched surface with Cattaneo–Christov heat flux and convective bound-
ary condition. Apposite transformations are betrothed to obtain ordinary differential equations with high
nonlinearity. Shooting method is summoned to decipher system of differential equations. Graphs of different
parameters against velocity, temperature and concentration profiles with relevant discussion are depicted
emphasizing their physical significance. A comparison in limiting case is also featured in this investigation.
It is found that effects of Williamson fluid parameter on velocity and temperature fields are conflicting.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Non-Newtonian fluids are of great attention for researchers
due to their enormous applications in industrial and engineering
processes. Examples of non-Newtonian fluids may include pulps,
sugar solutions, lubricants, apple sauce, tomato ketchup, shampoos,
and lubricants. Unlike Newtonian fluids, in these fluids there is a
nonlinear bond between deformation rate and shear stress. So, it
is not possible to construct a relation explaining features of all
non-Newtonian fluid models [1–10]. In non-Newtonian family tree,
pseudo-plastic fluids are useful in many engineering applications
like polymers and solutions with relatively higher molecular weight,
coated photographic films, adhesives and emulsions . Cross model,
Power law model, Carreaus model, Ellis model and Williamson
model can be quoted as fluids with pseudo-plastic features. Amongst
these, the Williamson fluid model has not yet been deliberated in
detail. Williamson fluid model describes the flow of shear thin-
ning non-Newtonian fluids. The industrial and biological liquids that
obey the Williamson fluid are polymer melts/solutions, ketchup,
blood, paint, whipped cream, nail polish, etc. Coined work of
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Williamson [11] who elucidated this model to express pseudo-
plastic physiognomies with both characteristics of minimum and
maximum viscosity motivated follower researchers to explore more
fronts in this interesting non-Newtonian fluid category. Akbar et
al. [12] found numerical solution of Williamson nanofluid flow
using fourth and fifth order RK–Fehlberg method in an irregular
channel. Nadeem et al. [13] examined Williamson fluid flow over
a stretched surface using Homotopy Analysis method. Malik and
Salahuddin [14] discussed numerical simulation of MHD Williamson
fluid flow near stagnation point using RK–Fehlberg method over a
stretched cylinder. Malik et al. [15] analyzed flow of Williamson fluid
numerically with heat generation/absorption and variable thermal
conductivity over a stretched cylinder using RK–Fehlberg method.
Hayat et al. [16] highlighted Soret and Dufour impact in Williamson
fluid flow under the influence of thermal radiation and viscous
dissipation over an unsteady stretched surface. Hayat et al. [17] also
studied Williamson fluid flow analytically using Homotopy Analy-
sis method in attendance of viscous dissipation, Newtonian Joule
and heating. Nadeem and Hussain [18] found series solution of
Williamson nanofluid flow over a stretching sheet. Salahuddin et
al. [19] explored numerical solution of MHD Williamson fluid flow
with Cattaneo–Christov heat flux and variable thickness effects past
a stretched surface. Prasannakumara et al. [20] established numerical
solution of Williamson nanofluid flow past a stretched surface with
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impact of chemical reaction in a porous medium. Effects of nonlinear
thermal radiation are also taken into account.

Chemical reactions are categorized as homogeneous and hetero-
geneous. Homogeneous are where reactions and catalyst operate in
the same phase but heterogeneous if they are in different phases.
In general, processes involving homogeneous catalyst are in gaseous
phase and in solid phase for heterogeneous catalyst. In case of
production and consumption, it is reasonably difficult to predict
relationship between homogeneous and heterogeneous reactions for
reactant classes at varied rates with the same fluid and on surface of
the catalyst. The importance of chemical reactions is more evident
in different engineering applications like hydrometallurgical indus-
try, food processing, manufacturing of ceramics, and groves of fruit
trees and crops damage via freezing. Chaudhary and Merkin [21]
examined stagnation point flow of viscous fluid with homogeneous
and heterogeneous reactions. Later, they [22] improved their model
by taking dissimilar diffusion coefficients for reactant and auto-
catalyst. Further, Merkin [23] discussed viscous fluid model with
isothermal homogeneous and heterogeneous reactions. Khan and
Pop [24] extended the work of Chaudhary and Merkin[21] by taking
viscoelastic fluid. The model presented in Ref.[21] is deliberated with
more insight by considering micropolar fluid passing through a per-
meable medium and a porous stretched surface by Shaw et al. [25].
Kameswaran et al. [26] studied vicious nanofluid flow with homo-
geneous and heterogeneous reactions past a permeable stretching
surface. Some more recent attempts in this area are referred to
Refs.[27–30].

Heat transfer mechanism is very useful because of its varied
engineering applications like nuclear reactors for cooling purposes,
magnetic drugs targeting, biomedical applications and cooling of
energy production space. For the last two centuries, classical Fourier
heat conduction law [31] was the only source to describe heat trans-
fer process. However, a major constraint in Fourier’s law named as
Paradox of heat conduction was that the medium experienced an
initial uproar immediately. This barrier was crossed by Cattaneo [32]
who interleaved relaxation time to heat flux. Christov [33] improved
Cattaneo’s proposed model by swapping simple derivative with that
of Oldroyd’s upper convected derivative. Straughan [34] extended
the work of Cattaneo–Christov by considering thermal convection
in an incompressible viscous fluid with downward gravity. Ciarletta
and Straughan [35] by considering Cattaneo–Christov equations,
analyzed that in an unsteady problem, solution to the backward is
highly depended on relaxation time. Mustafa [36] discussed flow of
upper Maxwell fluid rotating flow with Cattaneo–Christov equations.
Hayat et al. [37] presented a comparison of Cattaneo–Christov flux to
that of Fourier heat conduction past viscoelastic fluid flow.

The present study examines Williamson fluid flow with effects
of Cattaneo–Christov heat flux and convective boundary condition.
In addition, homogeneous–heterogeneous reactions are also consid-
ered with magnetohydrodynamics near a stagnation point. Numer-
ical solution is obtained for the problem using shooting technique.
This problem is being undertaken for first time in literature as far as
our knowledge is concerned. Graphical illustrations of varied promi-
nent parameters versus velocity, temperature and concentration
fields with requisite deliberation are also a part of this exploration.
A comparison to previous study is also provided to validate obtained
results.

2. Mathematical formulation

We presume flow of two dimensional MHD Williamson fluid with
Cattaneo–Christov heat flux near stagnation point with convective
boundary condition over a linearly stretched surface. The two
temperatures on and away from the sheet are denoted by Tw and T∞
with Tw ≥ T∞. Magnetic field of strength Bo is applied upright to the
stretched surface (see Fig. 1).

Fig. 1. Schematic flow diagram.

Polarization effects are ignored because peripheral electric field
is absent. Eventually, assumption to consider small Reynold’s num-
ber forced us to ignore induced magnetic field. Analysis is done
in attendance of homogeneous–heterogeneous reactions. For cubic
autocatalysis, homogeneous reaction is represented by

A + 2B → 3B, rate = kcab2, (1)

whereas on the surface of catalyst, the first order isothermal reaction
is given by

A → B, rate = ksa, (2)

with kc, ks are the rate constants and a, b are concentrations of the
different chemical classes, considering the fact that both reactions
are of isothermal nature. As suggested in Ref.[19], boundary layer
equations with respect to mass, momentum, energy and concentra-
tion are given by

∂u
∂x

+
∂v
∂y

= 0, (3)

u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+ m
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∂y2

+
√
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q
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qCP

(
u
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= −∇.q, (5)
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= DA
∂2a
∂y2

− kcab2, (6)

u
∂b
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+ v
∂b
∂y

= DB
∂2b
∂y2

+ kcab2. (7)

Here, u is along x-axis and v is along perpendicular axis. More-
over, ue, C,m, T, Cp,q, q and DA, DB are variable external free stream
velocity, time rate constant, kinematic viscosity, temperature, spe-
cific heat, fluid density, heat flux, heat flux, and diffusion coefficients
of the species A and B respectively.

q + k1

(
∂q
∂t

+ V.∇q − q.∇V + (∇.V) q
)

= −k∇T, (8)
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where k and k1 are fluid thermal conductivity and thermal relaxation
time. Eliminating q from Eqs. (5) and (8) following Christov [33]
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=
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(
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)
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)
, (9)

with boundary conditions

u = Uw = cx, v = 0, −k
∂T
∂y

= hf (Tw − T) ,

DA
∂a
∂y

= ksa, DB
∂b
∂y

= −ksa, at y = 0,

u → ue = ax, a → ao, b → 0, T → T∞ as y → ∞, (10)

where a0 > 0 is dimensional constant.
Using the following transformations

u = cxf ′(g), v = −√
cmf (g), a = a0g(g),

h(g) =
T − T∞

Tw − T∞
, g =

√
c
m

y, b = a0h(g). (11)

Eq. (3) is satisfied and Eqs. (4), (6), (7), (9) and (10) are given by

f ′′′ + Wef ′′f ′′′ + f f ′′ − f ′2 − M (f ′ − k) + k2 = 0, (12)

g′′ + Scf g′ − Sck1gh2 = 0, (13)

dh′′ + Scf h′ + Sck1gh2 = 0, (14)

h′′ + Pr fh′ − Prc
(

f 2h′′ + f f ′h′
)

= 0, (15)

and

f (0) = 0, f ′(0) = 1, g′(0) = k2g(0),

h′(0) = −c1(1 − h(0)), at y = 0,

f ′(∞) → k, g(∞) → 1, h(∞) → 0, as y → ∞, (16)

with Pr,c,c1, Sc, d,k, M and k1, k2 represent Prandtl number, ther-
mal relaxation time parameter, Biot number, Schmidt number, ratio
of diffusion coefficient, velocity ratio parameter, Hartmann number
and amount of force of homogenous and heterogeneous reactions
respectively. These quantities are represented by
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(17)

with the assumption that diffusion coefficients of chemical
classes A and B are of the same magnitude. Eventually, this leads to
the fact that DA and DB are similar, i.e., d = 1. So, we have

g(g) + h(g) = 1. (18)

From Eqs. (13) and (14), we have

g′′ + Scf g′ − Sck1g(1 − g)2 = 0, (19)

with

g′(0) = k2g(0), g(∞) = 1. (20)

Skin friction coefficient and local Nusselt number are defined by
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qu2
w(x)

, Nux =
xqw
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, (21)

with
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[
∂u
∂y

+
C

2

(
∂u
∂y

)2
]

y=0

, qw = −k
(
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)
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. (22)

Dimensionless forms of skin friction coefficient and local Nusselt
number are

2
√

2CfxRe1/2
x = f ′′(0) + Wef ′′2(0), Nux Re−1/2

x = −h′(0). (23)

3. Numerical solutions

The resulting system of nonlinear ODEs along with boundary con-
ditions is solved iteratively by the shooting method for several values
of different parameters. Shooting method is renowned because of
its simplicity and low computational cost. This method is more
faster in comparison to the finite difference or any other numerical
computational technique. On the basis of number of computational
experiments, we are considering [0, 7] as the domain of the problem
instead of [0, ∞) because for g > 7, there is no significant variation in
the results. We denote f by y1 , h by y4 and g by y6 for converting the
boundary value problem to the following initial value problem (IVP).

y′
1 = y2 y1(0) = 0,

y′
2 = y3 y2(0) = 1,

y′
3 = 1

1+Wey3

(
y2

2 − y1y3 + M (y2 − k) − k2)
y3(0) = r,

y′
4 = y5 y4(0) = s,

y′
5 = 1

1−Prcy2
(Prcy1y2y5 − Pr y1y5) y5(0) + c(1 − y4(0)),

y′
6 = y7 y6(0) = t,

y′
7 = −Scy1y7 + Sck1y6(1 − y6)2 y7(0) = k2y6(0),

where r, s and t are missing initial guesses. To refine these guesses,
we use Newton’s method.

4. Results and discussion

Here in this section, we have presented effects of arising
prominent parameters on respective distributions with physical
insight. Figs. 2 and 3 depict the effect of Williamson fluid parameter
We on velocity and temperature profiles respectively. In Fig. 2, it is
seen that velocity distribution is decreasing function of Williamson
parameter. Physically, higher resistance to the flow of fluid is
witnessed due to increase in relaxation time. Eventually, decrease
in velocity distribution is observed. Fluid temperature is increased
because of high resistance and more collisions of molecules in the
fluid. This fact is shown in Fig. 3. The influence of Hartmann number
M on velocity profile is displayed in Fig. 4. It is perceived that
increasing values of M decrease the velocity distribution. Amplified
Lorentz force is noted because of increasing Hartmann number that
opposes fluid motion and thus reduction in velocity profile is per-
ceived. The impact of thermal relaxation time c on temperature field
is portrayed in Fig. 5. It is witnessed that temperature profile and its
allied boundary layer thickness are diminishing functions of thermal
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We 0.2, 0.5, 0.9, 1.2

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

f  

Fig. 2. Influence of We on f′(g).

We 1.0, 5.0, 8.0, 11.0
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0.20

Fig. 3. Influence of We on h(g).

relaxation time. Because of growing thermal relaxation time, mate-
rial particles need additional time to transfer heat to adjacent par-
ticles. Physically, non-conducting behavior of material is observed
against mounting relaxation time parameter which reduces the tem-
perature field. Fig. 6 epitomize the behavior of Biot number c1
on temperature field. Higher values of Biot number upsurge the
temperature distribution which correspond to sturdy heat transfer
coefficient and eventually augmentation in temperature distribution
is observed. Measures of homogeneous and heterogeneous reactions
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1 2 3 4 5 6
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Fig. 4. Influence of M on f′(g).
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Fig. 5. Influence of c on h(g).

0.4, 0.6, 1.0, 1.5
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0.4

0.6

Fig. 6. Influence of c1 on h(g).

k1, k2 on concentration distribution are displayed in Figs. 7 and 8
respectively. In homogeneous reactions, consumption of reactants
results in decrease in concentration distribution with escalating val-
ues of k1. But concentration field decreases and increases as it is near
and away from the surface for larger values of k2. Away from the
surface, diffusion decreases, and escalation in concentration distribu-
tion is witnessed. Increasing values of Schmidt number enhances the
concentration field as displayed in Fig. 9. Since, Schmidt number is a
quotient of momentum diffusivity to mass diffusivity and because of

k1 0.1, 0.5, 0.9, 1.3

2 4 6 8 10 12
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0.5
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0.7

0.8
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Fig. 7. Influence of k1 on g(g).



860 M. Ramzan et al. / Journal of Molecular Liquids 225 (2017) 856–862

k2 0.7, 0.9, 1.2, 1.5

1 2 3 4 5 6 7

0.5

0.6

0.7

0.8

0.9

1.0

g

Fig. 8. Influence of k1 on g(g).
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Fig. 9. Influence of Sc on g(g).

smaller mass diffusivity mounting concentration field is witnessed.
Fig. 10 depicts that higher values of velocity ratio parameter k,
enhances the velocity profile. This is the case when the stretching
sheet’s velocity is higher than the free stream velocity for both k > 1
and k < 1. However, for k = 1, no boundary layer will be shaped.
Impact of Prandtl number Pr on temperature profile is portrayed in
Fig. 11. It is perceived that feeble thermal diffusivity is seen for larger
Prandtl number which is the basic cause for thinner thermal bound-
ary layer thickness. Fig. 12 is plotted to see the effects of Hartmann

Fig. 10. Influence of k on f′(g).

Pr 0.1, 0.6, 1.0, 1.5

1 2 3 4 5 6 7

0.05

0.10

0.15

Fig. 11. Influence of Pr on h(g).

number M and thermal velocity ratio parameter k on skin friction
coefficient. It is found that skin friction coefficient is increasing func-
tion of both M and k. Since, the magnetic field is normal to surface
there for strength produce by MHD will resist the fluid molecules
and enhance the skin friction at the surface. So, defined physical
interpretation pretends that skin friction is getting increase due to
rise of Hartmann number. Similarly, stagnation ratio parameter also
depicts the same behavior that we have achieved for Hartmann num-
ber. Since k is the ratio of free stream velocity to stretching velocity,
therefore k > 1 illustrates the higher free stream velocity as com-
pared to the stretching velocity and similarly k < 1 presents that
stretching velocity is greater than the free stream velocity. In Fig. 12,
it can be observed thatk = 0 has low skin friction as compared to
the nonzero values of k. While, skin friction is attaining increasing
behavior when stretching velocity is greater than the free stream
velocity (0 < k < 1). The impact of Prandtl number Pr and ther-
mal relaxation time parameter c on local Nusselt number is depicted
in Fig. 13. It is observed that escalating values of Pr and c results
in mounting local Nusselt number. According to the definition of
Prandtl number, it is the ratio of viscosity to the thermal diffusion
and so by enhancing the values of Prandtl number, fluid molecules
diffuse and rise the thermal conductivity of working fluid. Results
plotted in figure describe the similar effects on local Nusselt number
according to the definition of Prandtl number. Same increasing effect
can be found for Nusselt number with the variation of c.

Table 1 is constructed to compare various values of Williamson
parameter We in limiting case with already published results [38],
and all results are found to be in excellent agreement.

0.0, 0.05, 0.10, 0.15

0.6 0.7 0.8 0.9 1.0
M

1.00

1.05

1.10

1.15

f

Fig. 12. Influence of M and k on skin friction.
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Fig. 13. Influence of Pr and c on Nusselt number.

Table 1
Comparison of CfxRe1/2

x for various values of We.

We CfxRe1/2
x [38] Present

0 1 1
0.1 0.976588 0.976586
0.2 0.939817 0.939814
0.3 0.88272 0.88270

5. Final remarks

This effort examined the flow of Williamson fluid under the
influence of homogeneous–heterogeneous reactions and Cattaneo–
Christov heat flux past a linearly stretched surface. Effects of
magnetohydrodynamics with convective boundary condition near a
stagnation point are also considered. Shooting method is engaged to
find numerical solution of the present study. Salient characteristics
of the exploration are as follow:

• Behavior of We on velocity and temperature distributions are
opposite.

• Influence of M and kis similar on skin friction coefficient.
• Numerical results are in an excellent covenant in limiting case

to those already explored.
• Effects of k1 and k2 on g(g) are opposite.
• h(g) is mounting function of Biot number c1.
• Pr and c have diminishing tendency of temperature profile.
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