ACKNOWLEDGMENT

All my thanks to Almighty ALLAH Whose blessings enabled me to complete this Project.

I am very grateful to respected supervisor Mr. Asif Javed, Assistant Professor, Department of Earth & Environmental Sciences, Bahria University, Islamabad, for his guidance, dedication, time for making possible the completion of this research project within time. I have all my gratification to Co-Supervisor Dr. Azhar Mashiyatullah, Deputy Chief Scientist, IAD- PINSTECH, Nilore, Islamabad, for his continuous help and cooperation in providing me all the lab facilities through this research Project. I am also thankful Dr. Muhammad Zafar, Head of Department, Earth & Environmental Sciences, Bahria University, Islamabad, for his kind attention and guidance.

I would also thank to Mr. Tariq Javed, Principal Scientist and other members and staff of IAD-PINSTECH, who helped me during my experimental work. I also owe an acknowledgment to everyone of the Department of Earth & Environmental Sciences, Bahria University, Islamabad Campus who were accommodating me throughout my research Project.

I am extremely thankful to my parents, family members and friends for their consistent encouragement, endless love and the prayers, which have always been a source of inspiration and guidance for me all the way, their invaluable prays, salutary advises and emboldening attitude kept my spirit alive to reach this milestone.

ABSTRACT

The present study deals with the removal of zinc (Zn), cadmium (Cd), lead (Pb) and copper (Cu) from contaminated soil sample collected from Hattar Industrial Estate, Haripur, by using the electrokinetic (EK) technique in laboratory conditions. The technique involves two different electrolytes, acetic acid (CH₃COOH) and hydrochloric acid (HCl) keeping the voltage 20 V and 10 V respectively. The experiments were performed for 106 and 92 hours operation under 4.25 V/cm² and 2.0V/cm² potential gradient using the same type of soil sample. The EK apparatus was specially consisted of three compartments: cathode reservoir (5cm in length), anode reservoir (5cm in length) and contaminated soil chamber (10 x10x10 cm³). Two titanium electrodes were installed in the cathode and anode reservoir, respectively and five tungsten electrode wires of 2mm in contaminated soil sample with increment of ~2 cm. In the first experiment the (3M) CH₃COOH was used as electrolyte. Current density from cathode to anode increases with passage of time, however, small increase in current was observed after 30 hours till the termination of experiment which may be due to the loss of ionic strength in the pore fluid and movements of ionic species in EK cell. The pH of electrolyte became more acidic with the passage of time. The percentage removal of Zn, Cd, Pb and Cu was 97.2%, 97.9%, 98.9% and 97.3% respectively. In the second electrokinetic experiment, after four hours from the start of experiment, the current density slightly decreases from 5.8 mA/cm² to 4.6 mA/cm². The addition of fresh 10 ml electrolyte (HCl) increased the current which may be due to high acidic conditions. Same behaviour was also observed up to 92 hours. The percentage removal of Zn, Cd, Pb and Cu were 36.13%, 63.37%, 88.65% and 72.14% respectively. The Zn concentration in residual soil was highest at a

distance of 4.5cm away from anode and lowest at the start of anode. The concentration of Cd was significantly low in all segments of soil. Similarly, the concentration of Pb in soil segments at 4.5 cm away from anode was highest and lowest near anode. The concentration of Cu was almost uniform in the each segments of soil.

The study concludes that acetic acid is more efficient electrolyte in electrokinetic remediation as compared to hydrochloric acid. Further, acetic acid is an environmentally safe organic acid, biodegradable and does not create a health hazard when it is used in conditioning the pore fluid in electrokinetic remediation of sites, however detailed studies should be conducted to know the effectiveness of electrokinetic remediation process by using different electrolytes for the removal of heavy metals from polluted soils.

ABBREVIATIONS

Abbreviation	
EK	Electrokinetic
DC	Direct Current
EKR	Electrokinetic Remediation
EKRT	Electrokinetics Remediation Technology
рН	Power of Hydrogen ions
М	Molarity
TAC	Towards Anode Concentration
TCC	Towards Cathode Concentration
MC	Middle Concentration
Zn	Zinc
Cd	Cadmium
Pb	Lead
Cu	Copper
CH ₃ COOH	CH ₃ COOH
HCl	Hydrochloric Acid
V	Voltage
DC	Direct Current
рН	Power of Hydrogen Ions
BOD	Biological Oxygen Demand
КРК	Khyber Pakhtunkhwa
ppm	parts per million
IAD	Isotope Application Division
PINSTECH	Pakistan Institute of Nuclear Science and Technology

CONTENTS

ACKNOWLEDGEMENT	i
ABSTRACT	ii
ABBREVIATIONS	iv
CONTENTS	v
FIGURES	viii
TABLES	Х

CHAPTER 1

INTRODUCTION

1.1	Background	1
1.2	Remediation Technologies	2
1.3	Electrokinetic Remediation Technology(EKRT)	2
1.3.1	Electrokinetic Technology Development	4
1.4	Electrokinetic Mechanism	5
1.4.1	Current application	5
1.4.2	Mechanism for Contaminant Transport	6
1.5	Factors Affecting Electrokinetic Technology	8
1.6	EK Technology Advantages and Limitations	9
1.6.1	Advantages	9
1.6.2	Technology Limitations	11
1.7	Soil Contamination	12
1.7.1	Soil Contamination in Pakistan	12
1.8	Objectives	13

CHAPTER 2

LITERATURE REVIEW

14

CHAPTER 3

MATERIAL AND METHODOLOGY

3.1	Research Design	24
3.2	Study Area	24
3.3	Equipments	25
3.3.1	Electrokinetic Remediation Apparatus	26
3.3.2	Soil cell compartment	27
3.3.3	Electrodes	28
3.4	Field and laboratory Procedures	28
3.4.1	Field Soil Sampling	28
3.4.2	Sample Conditioning and Preservation	29
3.5	Electrokinetic Experiments	29
3.5.1	Loading of Soil and Electrolyte in the Electrokinetic cell	29
3.5.2	Supply of potential difference to the EK cell	29
3.5.3	Duration of experiments	30
3.6	Sample Collections	30
3.6.1	Electrolytes sampling collection procedure	30
3.6.2	Soil sample collection from electrokinetic cell	30
3.7	Physiochemical and Metal Analysis	31
3.7.1	Physiochemical Analysis	31
3.7.2	Heavy Metal Analysis	31
3.8	Calculation of Removal Efficiency	31

CHAPTER 4

RESULT AND DISCUSSION

4.1	Remediation of heavy metals with acetic acid	32
4.1.1	Current variation with time lapse	32
4.1.2	Voltages variation with time lapse	33
4.1.3	pH variation with time lapse	35
4.1.4	Initial heavy metals concentration of test soil leachable in acetic acid	36

4.1.5	Concentration variation of metal contaminants in Soil cell	37
4.1.5.1	Zinc concentration	37
4.1.5.2	Cadmium concentration	38
4.1.5.3	Lead concentration	38
4.1.5.4	Copper concentration	39
4.1.6	Residual concentration of metals and removal efficiencies	40
4.2	Remediation of heavy metals with hydrochloric acid	42
4.2.1	Current variation with time lapse	42
4.2.2	Voltages variation with time lapse	43
4.2.3	Initial heavy metals concentration of test soil leachable in hydrochloric	44
	acid	
4.2.4	Concentration variation of metal contaminants in Soil cell	44
4.2.4.1	Zinc concentration	44
4.2.4.2	Lead concentration	45
4.2.4.3	Cadmium concentration	46
4.2.4.4	Copper concentration	47
4.2.5	Residual concentration of metals and removal efficiencies	48

CHAPTER 5

CONCLUSIONS & RECOMMENDATIONS

5.1	Conclusions	50
5.2	Recommendations	51

REFERENCES

FIGURES

		Page
Figure 1.1.	Typical Schematic Layout of EK Process (USEPA, 1997)	4
Figure 1.2.	Schematic drawing of current application over electrodes	6
	placed in water based solution	
Figure 1.3.	Electrokinetic principle mechanisms of contaminant transport	7
	under an applied electrical field	
Figure 3.1.	Hattar Industrial Estate ,Haripur, KPK, Pakistan	25
Figure 3.2.	Electrokinetic soil remediation set-up	26
Figure 3.3.	Soil Cell and Electrolyte Compartments (top view)	27
Figure 3.4.	Electrokinetic Cell assembled with test soil and Electrolytes	28
	(front view)	
Figure 4.1.	Variations in current density against time Lapse	33
Figure 4.2.	Variation in voltage against time lapse from anode to electrodes	34
Figure 4.3.	Variation in voltage against time lapse from cathode to	34
	electrodes	
Figure 4.4.	Variation in pH at Anolyte and catholyte against time lapse	35
Figure 4.5.	Variation in concentration of zinc against time lapse at Anolyte	37
	& Catholyte	
Figure 4.6.	Variation in concentration of cadmium against time lapse at	38
	Anolyte & Catholyte	
Figure 4.7.	Variation in concentration of Pb against time lapse at anolyte &	39
	catholyte	
Figure 4.8.	Variation in concentration of copper against Time lapse at	40
	anolyte and catholyte	
Figure 4.9.	Concentration of metals in different soil segment at the end of	41
	EKR process	
Figure 4.10.	Percentage removal of metals (Zn, Cd, Pb and Cu) by using 3M	41
	CH ₃ COOH	
Figure 4.11.	Variation of current density against time lapse	42
Figure 4.12.	Variation in voltages against Time Lapse from anode to	

electrodes

Figure 4.13.	Variations of voltages against time lapse from cathode to	44
	electrodes	
Figure 4.14.	Variation in concentration of Zinc against time lapse at anolyte	45

43

and catholyte

- Figure 4.15. Variation in concentration of Lead against time lapse at anolyte 46 and catholyte
- Figure 4.16. Variation in concentration of Cadmium at anolyte and catholyte 47 compartment
- Figure 4.17. Variation in concentration of copper against time lapse at 48 anolyte and catholyte
- Figure 4.18. Concentration of metals in different soil segment at the end of 48 EKR process
- Figure 4.19. Percentage removal of metals (Zn, Cd, Pb and Cu) by using 1M 49 HCl

TABLES

		Page
Table 4.1	pH before and after EKR-CH3COOH	35
Table 4.2	Initial concentrations of Zn, Cd, Pb and Cu in the Hattar industrial	37
	area soil extracted with 3M acetic acid	
Table 4.3	Initial concentrations of Zn, Cd, Pb and Cu in the Hattar industrial	44
	area soil extracted with 1M HCl	