STRUCTURAL INTERPRETATION OF BALKASSAR ANTICLINE POTWAR SUB BASIN, PAKISTAN BASED ON 2-D SEISMIC DATA

BY

MALIK MUHMMAD SHIRAZ

Faculty of Earth and Environmental Sciences, Bahria University, Islamabad

TABLE OF CONTENTS

TOPICS				PAGE NO
Acl	knowle	edgements	3	
Abs	stract			
List	t of Fi	gures		
Lis	t of Ta	bles		
			CHAPTER # 1	
Int	roduct	tion		
1.1	Genera	al introduction	1	1
1.2	Introdu	uction to study	y area	2
			CHAPTER # 2	
Phy	ysiogra	aphy		
2.1	Genera	al Physiograph	hy	5
			CHAPTER # 3	
Ge	ology	of the Are	a	
3.1	Stratig	graphy		7
3.2	Lithol	ogical descrip	tion of formations	8
3.3	.3 Paleozoic sedimentary rocks			8
	3.3.1	Cambrian		8
		3.3.1.1	Khewra Formation	9
	3.3.2	Permian		9

		3.3.2.1	Tobra For	mation	9
		3.3.2.2	Dandot Fo	ormation	9
		3.3.2.3	Warchha	Formation	10
		3.3.2.4	Sardhai F	ormation	10
3.4	Tertia	ry sedimentary	rocks		11
	3.4.1	Paleogene			11
		3.4.1.1	Paleocene	;	11
			3.4.1.1.1	HanguFormation	11
			3.4.1.1.2	LockhartFormation	12
			3.4.1.1.3	Patala Formation	12
		3.4.1.2	Eocene		12
			3.4.1.2.1	Sakesar Formation	12
			3.4.1.2.2	ChorgaliFormation	13
	3.4.2	Neogene			13
		3.4.2.1	Miocene		13
			3.4.2.1.1	Murree Formation	13
			3.4.2.1.2	Kamlial Formation	14
			3.4.2.1.3	Chinji Formation	14
		3.4.2.2	Pliocene		14
			3.4.2.2.1	Nagri Formation	15
3.5	Regio	nal depositiona	l history		17
3.6	Poten	tial decollemen	t level and	faulting	17

3.7	Interpretation of subsurface mapping	18	
3.8	Regional tectonic settings		
3.9	Petroleum geology		
	3.9.1 Hydrocarbon entrapment in Potwar	22	
3.10	Hydrocarbon potential of Cambrian	24	
	3.10.1 Regional distribution of Cambrian	24	
	3.10.2 Tectonic and depositional setting of Cambrian	24	
3.11	Source rocks	25	
3.12	Reservoir rocks	25	
3.13	Traps	26	
3.14	Burial history	26	

CHAPTER # 4

Seismic data acquisition

4.1	Introduction	32
4.2	Instruments used	33
4.3	Seismic Energy Sources for Reflection Shooting	33
	4.3.1 Vibroseis	34
4.4	Seismic detectors	35
	4.4.1 Geophone	35
4.5	Spread geometry	36

CHAPTER # 5

Seismic data processing

5.1	Introdu	ction		
5.2	Param	eters used		38
5.3	Object	ives		39
5.4	Seismic data processing			
	5.4.1	Processing Se	quence	40
	5.4.2	Correlation		41
		5.4.2.1	Cross Correlation	42
		5.4.2.2	Auto Correlation	42
	5.4.3	Vibroseis Cor	rrelation	42
	5.4.4 Editing and M		luting	42
		5.4.4.1	Muting	43
	5.4.5	Geometric Co	orrections	43
		5.4.5.1	Static correction	44
		5.4.5.2	Dynamic correction	44
	5.4.6	Filtering		45
		5.4.6.1	Digital Filters	45
	5.4.7	Deconvolution		46
	5.4.8	Velocity Ana	lysis	47
	5.4.9	Migration		48

CHAPTER # 6

Seismic velocities

6.5	Factor	s affecting velocity	57
6.5	Correlation between velocity types		56
	6.4.5	Instantaneous velocity	56
	6.4.4	Normal-Move out Velocity	55
	6.4.3	Root-Mean-Square (RMS) Velocity	53
	6.4.2	Interval Velocity	53
	6.4.1	Average Velocity	52
6.4	Types	of velocities used in seismic exploration	51
6.3	Veloci	ty Estimation	51
6.2	Effect	s of physical properties of rocks on seismic velocities	50
	6.1.1	The nature of velocity data	50
6.1	Introduction		

CHAPTER # 7

Seismic data interpretation

7.1	Introduction	58
7.2	Structural analysis	59
7.3	Stratigraphic analysis	59
7.4	Methods of preparing depth section	60
7.5	Interpretation plan	60
	7.5.1 Interpreter's objective	60

		Chapter # 8	
7.13	Structu	ire	66
7.12	Depth Contour Map		
7.11	Average Velocity Graph		65
7.10	Time Contour Map		65
7.9	Fault i	dentification	64
7.8	Reflectors identification		
7.7	Base map		
7.6	Interpr	etation techniques	62
	7.5.4	Building and merging data sets	61
	7.5.3	Seismic patter	61
	7.5.2	Regional Tectonic, structural, and depositional trends	60

CONCLUSIONS	78
REFERENCES	79

ABSTRACT

Balkassar Oil Field discovered in 1945 is one of the oldest known Oil Fields of Pakistan. It lies in the Central Potwar on the southern flank of Soan Syncline. The already interpreted 2-D seismic data, consisting of seismic lines PBJ-04 and PBJ-09 is re-interpreted. This seismic survey was carried out in 1980 to explore the deeper potential of the sedimentary sequence i.e. Khewra Sandstone of Early Cambrian age. The surface geological information does not reflect the subsurface geometry of the Balkassar Anticline.

The major aim of interpretation is to reveal as clearly as possible the subsurface structure of the Balkassar Anticline and to infer the possibility of hydrocarbon occurrence in deeper horizons of the sedimentary sequence. The interpretation includes, the calculation of lateral and horizontal variation in seismic velocities and amplitudes that help in recognizing the structural and stratigrahic variations of the Balkassar Anticline, the construction of time contour map of top Eocene and preparation of depth sections along Seismic dip lines PBJ-04 and PBJ-05.

The Balkassar Structure is a long, northeast southwest trending double plunging anticline. The structure is bounded by tear and reverse faults. The northwestern flank of the structure is steeply dipping and is terminated by southeast dipping reverse fault. Estimated horizontal closure of Balkassar Anticline is 80 sq.km and the vertical closure is 365 meter. Two decollment surfaces are present, one in the Pre-Cambrian Salt, the other in Neogene Sediments. The compressional tectonic of the structure is obvious from the reverse faults that bound the plunge of the structure. The geoseismic section along PBJ-04 show a salt-cored Pop-Up structure, which is one of the most favorable structures for oil and gas accumulation. The well data of Balkassar Oxy # 1 was used to confirm the reflectors depth.