# 2-D SEISMIC DATA INTERPRETATION OF LINES 20017-BTM-02 & 996-BTM-28, SANGHAR AREA, BITRISIM BLOCK, SINDH, PAKISTAN



## By

## Robina Bibi

## Faculty of Earth and Environmental Sciences

Bahria University, Islamabad

2007

#### CONTENTS

|                                         | Page No |
|-----------------------------------------|---------|
| ABSTRACT                                | V       |
| ACKNOWLEDGEMENT                         | vi      |
| LIST OF FIGURES                         | vii     |
| LIST OF TABLES                          | viii    |
| Chapter-1 INTRODUCTION                  |         |
| 1.1 Ichhri Well                         | 1       |
| 1.1.1 Pertinent Well Data               | 1       |
| 1.1.2 Location                          | 1       |
| 1.1.3 Well Objectives                   | 1       |
| 1.1.4 Structure                         | 2<br>2  |
| 1.2 Chandesri Well                      | 2       |
| 1.2.1 Pertinent Well Data               | 2       |
| 1.2.2 Introduction                      | 3       |
| 1.2.3 Location                          | 3       |
| <b>1.2.4</b> Type                       | 3       |
| 1.2.5 Objectives                        | 4       |
| 1.2.6 Summary of Operations             | 4       |
| 1.2.7 Results and Present Status        | 5       |
| Chapter-2 GEOLOGY                       |         |
| 2.1 Tectonics and Structure             | 6       |
| 2.1.1 Tectonics                         | 6       |
| 2.1.2 Structure                         | 7       |
| 2.2 Petroleum Prospects                 | 7       |
| 2.2.1 Source Rocks                      | 7       |
| 2.2.2 Reservoir Rocks                   | 7       |
| <b>2.2.3</b> Cap Rocks                  | 7       |
| 2.3 Stratigraphy of Chandesri Well      | 7       |
| <b>2.3.1</b> Alluvium                   | 8       |
| 2.3.2 Kirthar Formation                 | 11      |
| 2.3.3 Laki Formation                    | 11      |
| 2.3.4 Sui Main Limestone (Member)       | 12      |
| 2.3.5 Upper Ranikot (Ranikot Formation) | 12      |
| 2.3.6 Lower Ranikot (Ranikot Formation) | 13      |

| <b>2.3.7</b> Upper Goru (Goru Formation)     | 13 |
|----------------------------------------------|----|
| 2.4 Stratigraphy of Ichhri Well              | 15 |
| <b>2.4.1</b> Alluvium                        | 15 |
| 2.4.2 Kirthar Formation                      | 18 |
| 2.4.3 Laki Formation                         | 18 |
| 2.4.4 Sui Main Limestone                     | 19 |
| 2.4.5 Upper Ranikot (Ranikot Formation)      | 19 |
| 2.4.6 Lower Ranikot (Ranikot Formation)      | 20 |
| 2.4.7 Upper Goru (Goru Formation)            | 20 |
| 2.4.8 Lower Goru (Goru Formation)            | 21 |
| Chapter-3 SEISMIC METHOD                     |    |
| 3.1 Seismic Waves                            | 24 |
| 3.1.1 Body Waves                             | 25 |
| <b>3.1.1.1</b> P-Waves                       | 25 |
| <b>3.1.1.2</b> S-Waves                       | 25 |
| 3.1.2 Surface Waves                          | 25 |
| <b>3.1.2.1</b> Love Waves                    | 26 |
| 3.1.2.2 Rayleigh Waves                       | 26 |
| 3.2 Basic Principles of Seismic method       | 26 |
| 3.2.1 Refraction Method                      | 27 |
| 3.2.2 Reflection Method                      | 27 |
| 3.3 Movement of Seismic waves                | 27 |
| <b>3.3.1</b> Snell's Law                     | 28 |
| 3.3.2 Huygen's Principle                     | 28 |
| <b>3.3.3</b> Fermet's Principle              | 28 |
| 3.4 Seismic Velocities                       | 28 |
| 3.4.1 Average Velocity                       | 29 |
| 3.4.2 Interval Velocity                      | 29 |
| 3.4.3 Root Mean Square Velocity              | 30 |
| 3.4.4 Stacking Velocity                      | 30 |
| <b>3.5 Factors Affecting Velocity</b>        | 30 |
| Chapter-4 SEISMIC DATA ACQUISITION           |    |
| 4.1 The Spread Geometry                      | 33 |
| 4.2 The CDP Method                           | 34 |
| 4.3 Energy Sources                           | 34 |
| 4.3.1 Impulsive Energy Sources               | 34 |
| 4.3.2 Non Impulsive Energy Sources           | 35 |
| 4.4 Detection and Recording of Seismic Waves | 36 |
| 4.4.1 Geophones                              | 36 |
|                                              | 20 |

| 4.4.2 Seismic Cable                   | 37       |
|---------------------------------------|----------|
| 4.4.3 Recording Stage                 | 37       |
| 4.4.3.1 The Analogue Recording System | 38       |
| 4.4.3.2 The Digital Recording System  | 38       |
| Chapter-5 SEISMIC DATA PROCESSING     |          |
| 5.1 Processing Sequence               | 39       |
| 5.1.1 The Preliminary stack           | 39       |
| 5.1.2 Parameters Optimization         | 39       |
| 5.1.3 The Final Stack                 | 39       |
| 5.2 Demultiplexing                    | 39       |
| 5.3 Vibroseis Correlation             | 40       |
| 5.4 Editing                           | 40<br>40 |
| 5.5 Spherical Divergence Correction   | 40       |
| 5.6 Seismic Noises                    | 41       |
| 5.7 Spread Geometry                   | 41       |
| 5.8 CDP Reflection Profiling          | 42       |
| 5.9 Statics Correction                | 42       |
| 5.10 Normal Moveout                   | 43       |
| 5.11 CDP Gather                       | 43       |
| 5.12 Residual Statics                 | 43       |
| 5.13 Filters                          | 44       |
| 5.14 Digital Filters                  | 44       |
| 5.15 Deconvolution                    | 44       |
| 5.16 Stacking                         | 45       |
| 5.17 Velocity Analysis                | 45       |
| 5.18 Migration                        | 46       |
| Chapter-6 INTERPRETATION              |          |
| 6.1 Marking of the horizons           | 47       |
| 6.2 Tie points of seismic sections    | 47       |
| 6.3 Marking of faults                 | 47       |
| 6.4 Reading the time of each horizon  | 47       |
| 6.5 Posting of the data               | 47       |
| 6.6 Misties                           |          |
| 6.7 Time Contour Maps                 | 48<br>48 |
| 6.8 Root mean square velocity         | 48       |
| 6.9 Velocity Contour Maps             | 48       |
| 6.10 Value of Depth                   | 48       |
| 6.11 Depth Contour Maps               | 48       |
| 6.12 Seismic Section                  | 48       |
|                                       | . 0      |

| 49<br>49 |
|----------|
|          |
| 68       |
| 69       |
|          |
| 70       |
| 70       |
|          |
| 74<br>76 |
|          |

#### ABSTRACT

The seismic lines 20017-BTM-02 & 996-BTM-28 lies in the Bitrisim block of the Sanghar area, Sindh. The data acquisition and processing of these lines was done by OGDCL.

Ichhri Well No. 1 is located 63 Kms. north of Bobi field in Khairpur District, Sindh Province. The well was drilled to test the hydrocarbon potential of Sands of Lower Goru Formation of Cretaceous age. The well was spudded in on 12-05-1992 and reached its TD i.e. 3300 M in Lower Goru "Massive" Sands, on 30-08-1992

After the interpretation of logs and by correlating with the adjacent wells it was revealed that all the expected reservoir sand layers are present. But on quick look log interpretation, it appeared that the sands drilled in this well are wet. Being negative response of logs supported by RFT results and poor hydrocarbon shows during drilling, it was recommended that the well may be abandoned by placing cement plug.

Two more wells Chandesri and Fatch were also drilled in the area. Chandesri Well was spudded in on 26<sup>th</sup> December 1999 and was declared abandoned on 9<sup>th</sup> September 2000 while Fatch well was spudded in on 20<sup>th</sup> May 2002 and was declared abandoned on 20<sup>th</sup> August 2002, but these both wells are of the same fate.

In the southern portion of the area, at least four to five wells were tested and all declared dry and abundant.

Owing to the potential hydrocarbon areas in its nearby vicinity, the lines were selected to study the failure of the wells, its causes and to design any strategy to explore any hydrocarbon potential in future.