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A B S T R A C T

The present exploration discusses two dimensional incompressible third grade-fluid flow under the
influence of Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Effects of magneto-
hydrodynamic and convective boundary condition are also taken into account. Boundary layer approach
is engaged to obtain system of partial differential equations. Appropriate transformations are betrothed
to transmute partial differential equations with high non-linearity to nonlinear differential equations.
Renowned Homotopy Analysis method is summoned to find analytical solution of all involved distributions.
Consequences of pertinent emerging parameters on related profiles are portrayed and relevant discussion
is added with special focus on their physical aspects. It is observed that homogeneous and heterogeneous
reactions depict conflicting behavior on Concentration distribution. It is also noted that increasing values
of thermal relaxation parameter diminishes temperature field. A comparison to previous exploration is also
added to validate our results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Non-Newtonian fluids are imperative in boundary layer flows
because of their engineering and technology related applications.
Apple sauce, tomato paste, paints, ketchup, polymeric liquids, jellies,
glues, soaps, blood, inks, cosmetic products are examples of non-
Newtonian fluids. As there are variety of non-Newtonian fluids so
it is reasonably difficult to form an equation expressing the elas-
tic and viscous properties of these fluids. In comparison to viscous
fluids, mathematical modeling of non-Newtonian fluids is consid-
erably complex and challenging. Even then many researchers are
adding valuable contribution on these fluids highlighting differ-
ent aspects [1–5] . Non-Newtonian fluids are categories as integral,
differential and rate types. Second grade fluid which is a differ-
ential type fluid has the characteristics to identify normal stress
differences only but shear thinning/thickening phenomena does not
fall in its domain. Nevertheless, third-grade fluid model can pre-
dict about both features of shear thinning/thickening and normal
stress. Many researchers have explored third grade fluid model
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with numerous aspects despite many complexities in its model-
ing. For example, Hayat et al. [6] found analytical solution of MHD
third-grade fluid axisymmetric flow over a stretching cylinder using
Homotopy Analysis method. Nadeem and Saleem [7] discussed flow
of third grade nanofluid over vertical rotating cone with Homotopy
Analysis method. Abbas et al. [8] examined third grade fluid flow
near a stagnation point over a porous plate with chemical reac-
tion. A hybrid numerical technique comprises of finite difference and
shooting method is engaged. Third grade fluid flow with effect of
Cattaneo-Christov heat flux over a surface which is stretched expo-
nentially is studied by Shehzad et al. [9]. Javed and Mustafa [10]
explored stagnation point third-grade fluid flow under the influ-
ence of mixed convection and viscous dissipation with slip boundary
condition.

In nature, difference of temperature decides the rate of heat
transfer between two bodies or within an independent unit. For
the last two centuries, Fourier law of heat conduction has been the
only yardstick to gauge heat transfer rate. One of the drawback
of this law named “Paradox of heat conduction” was to generate
parabolic energy equation which indicates that any disruption in
the beginning will carry all through the substance. Cattaneo [11]
addressed this candid problem by adding thermal relaxation time to
Fourier law which transfer heat in the form of thermal waves with
restricted speed. This model was improved by Christov [12] who
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swapped Maxwell-Cattaneo’s model time derivative by Oldroyd’s
upper-convected derivative to sanctuary its original formulation
and documented as Cattaneo-Christov heat flux model in the lit-
erature. Distinctiveness of the solutions obtained from Cattaneo-
Christov equations was verified by Ciarletta and Straughan [13].
Mustafa [14] found analytical solution of UMC fluid rotating flow
with effect of Cattaneo-Christov heat flux. Abbasi et al. [15] examined
Cattaneo–Christov heat flux model for incompressible Oldroyd-B
fluid over a linearly stretching sheet using Optimal HAM. Rubab
and Mustafa [16] found analytical solution of MHD three dimen-
sional Maxwell fluid flow accompanying Cattaneo-Christov heat flux
model using HAM. Shehzad et al. [17] discussed Cattaneo-Christov
heat flux model in the flow of third-grade fluid past an exponen-
tial stretching sheet. A similar three dimensional Burger fluid study
in attendance of Cattaneo-Christov heat flux model is conducted
by Khan and Khan [18]. Some most recent attempts highlighting
Cattaneo-Christov heat flux model are appended at Refs. [19–22].

A phase is a distinct, uniform state of a system that has no
observable boundary which may divide the system into compo-
nents. Chemical reactions are broadly classified into homogenous
reactions (occurring in single phase) and heterogeneous reactions
(involving multiple phases). A reaction is often aided with a cat-
alyst, which enhances a reaction’s rate by providing a substitute
path for reaction having lower activation energy. In recent times,
scientists are very much concerned in creating effective and effi-
cient processes that includes an amalgamation of both homogenous
and heterogeneous reactions; the researchers are currently much
concerned with the study of the complex interactions of these reac-
tions. Abbas et al. [23] discussed stagnation point fluid flow with
of generalized slip condition under the influence of homogeneous–
heterogeneous reactions past a permeable stretching surface using
shooting method technique. Hayat et al. [24] found convergent
series solution of viscoelastic fluid with effects of melting heat
and homogeneous heterogeneous reactions due to a stretching
cylinder. Hayat et al. [25] also investigated flow of two dimen-
sional Oldroyd-B fluid under the influence of magnetohydrodynamic
(MHD) and homogeneous–heterogeneous reactions using Homotopy
Analysis method. Kameswaran et al. [26] explored homogeneous–
heterogeneous reactions in a viscous nanofluid flow past a stretching
sheet analytically when the auto catalyst and diffusion coefficients of
the reactant are equal.

Convective heat transfer studies have gained significant consider-
ation owing its applicability in different high temperature processes
like nuclear power plants, gas turbines and storage of thermal energy
etc. Recently, Ramzan et al. [27] discussed Micropolar fluid flow
with effects of thermal radiation, joule heating and magnetohydro-
dynamic using Homotopy Analysis method. Haq et al. [28] debated
convective heat transfer over a stretched surface in attendance of
carbon nanotubes. They also incorporated effects of viscous dissipa-
tion and magnetohydrodynamic. Hayat et al. [29] examined effects
of convective boundary condition on flow of nanoparticle in 3D
Maxwell fluid flow. Hayat et al. [30] also explored nano particle con-
centration in the flow of couple stress fluid flow with convective
boundary condition over a nonlinear stretched surface. Massod et
al. [31] found numerical solution of stagnation point Carreau fluid
flow with heat and mass convective boundary conditions under the
influence of magnetohydrodynamic RK-method.

Motivation from above, the core objective of this investigation is
to discuss flow of third grade fluid with effects and homogeneous-
heterogeneous reaction and Cattaneo-Christov heat flux past a linear
stretching sheet. Effects of convective boundary condition with mag-
netohydrodynamic are also taken into account. Analytical solution
of problem is found using Homotopy Analysis method [32–37]. This
seems to be a first attempt in this direction. Discussion of promi-
nent parameters supported by graphs is added to the problem.
Comparison with an earlier study is also featured in this exploration.

2. Mathematical formulation

We have considered MHD flow of third grade fluid under the
combined effects of Cattaneo-Christov heat flux and homogeneous-
heterogeneous reactions over a sheet stretched linearly along x-axis.
Magnetic field of strength Bo is applied along y−axis. Induced mag-
netic field is ignored because of our supposition of small Reynolds
number. Obviously, temperature at the sheet Tw is greater than the
temperature far away from the sheet T∞. There is an isothermal cubic
autocatalytic (homogeneous) reaction on boundary layer flow how-
ever first order reaction (heterogeneous) is taken on catalyst surface
that are represented by [23–26]

A + 2B → 3B, rate = kc ab2 (1)

A → B, rate = ksa (2)

where kc, ks are rate constants and a, b are concentrations of the
chemical species A, B respectively. Considering that there is no
change in temperature for the both reactions. Employing bound-
ary layer approximations and taking into account all considerations
mentioned above, the governing equations of the system are
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where k1, Cp, v, T,a,q and q are retardation time, specific heat, kine-
matic viscosity, temperature, ratio of relaxation to retardation times,
fluid density and heat flux respectively satisfying the equation

q + k2
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with k and k2 are fluid thermal conductivity and thermal relaxation
time respectively. Ignoring q from Eqs. (5) and (8) with assumption
by Christov [12], we get
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(9)

Subject to the boundary conditions

u = Uw = cx, v = 0, −k
∂T
∂y

= hf (Tw − T) ,

DA
∂a
∂y

= ksa, DB
∂b
∂y

= −ksa, at y = 0,

u → 0, a → ao, b → 0, T → T∞ asy → ∞, (10)
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where DA, DB and a0 > 0 are diffusion coefficients and dimensional
constant respectively. Moreover, Uw, k, Tw, hf and c&ao are velocity
at wall, thermal conductivity of the fluid, wall temperature, heat
transfer coefficient and dimensional constant respectively.

Using following transformations

u = cxf ′(g), v = −√
cmf (g), a = a0g(g),

h(g) =
T − T∞

Tw − T∞
,g =

√
c
m

y, b = a0h(g). (11)

Satisfaction of Eq. (3) is evident, however Eqs. (4),(6),(7),(9) and
(10) lead to the following non-dimensional forms

f ′′′+f f ′′−f ′2+41
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)
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f (0) = 0, f ′(0) = 1, g′(0) = k2g(0), dh′(0) = −k2g (0) ,

h′(0) = −c1 (1 − h (0)) , at y = 0,

f ′(∞) → 0, g (∞) → 1, h (∞) → 0, as y → ∞, (16)

where (41, 42,b),c, Sc, Pr, d, M, Re and (k1, k2) are the material param-
eters for third grade fluid, thermal relaxation time, Schmidt number,
Prandtl number, ratio of diffusion coefficient, Hartmann number,
Reynold number and amount of homogenous and heterogeneous
reactions respectively. These quantities are demarcated as stated
below
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With the assumption that diffusion coefficients of chemical
species A and B are of analogous magnitude and this lead us to sup-
pose that DA and DB are identical provided d = 1. Thus, we have

g(g) + h(g) = 1. (18)

From this, Eqs. (13) and (14) take the form

g′′ + Scf g′ − Sck1g(1 − g)2 = 0, (19)

and respective boundary conditions eventually come to the following
form

g′(0) = k2g(0), g(∞) = 1. (20)

Skin friction coefficient and local Nusselt number in dimensional
form are
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q
2 u2

w(x)
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xqw
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, (21)

f g

Fig. 1. Graph of f, h and g.

where tw and qw are the sheer stress and surface heat flux are
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Dimensionless forms of skin friction coefficient and local Nusselt
number are represented by

CfxRe1/2
x

2
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[
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3. Homotopic Analysis solutions

Analytical solutions for the derived system of equations with
associated boundary conditions are obtained using Homotopy Anal-
ysis method (HAM). In this specific method or other technique, initial
guesses are necessitated whenever series solution is required. Con-
sidering boundary conditions Eq. (16) and semi-infinite domain of
our problem, choice of initial guesses of the form e−g will give a rapid
convergence whenever g → ∞. That is why we select initial guesses
(f0(g), g0(g), h0(g)) and respective operators (Lf(g),Lg(g),Lh(g)) as
given below

f0(g) = 1 − e−g, g0(g) = 1 − e−k2g

2
, h0(g) =

c1

1 + c1
e−g, (24)

Lf (g) = f ′′′ − f ′, Lg(g) = g′′ − g′,Lh(g) = h′′ − h′. (25)

These operators own the following properties

Lf
[
C1 + C2eg + C3e−g

]
= 0, (26)

Lg
[
C4eg + C5e−g

]
= 0, (27)

Lh

[
C6eg + C7e−g

]
= 0, (28)
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Table 1
Convergence of Homotopic solutions for various order of estimates when a =
0.2,b = 0.3, M = 0.3, Pr = 1.0,c = Re = 0.1,c1 = 0.2, > Sc = 1.0, k1 = 0.2, >
k0 = 0.2, k = 0.4.

Order of approximations −f
′ ′

(0) −h′(0) −g′(0)

1 1.03667 0.19730 −0.16317
5 1.06528 0.19318 −0.15580
10 1.07157 0.19297 −0.15228
15 1.07343 0.19391 −0.15069
20 1.07420 0.19505 −0.14982
25 1.07459 0.19616 −0.14930
30 1.07493 0.19720 −0.14896
35 1.07495 0.19814 −0.14872
40 1.07495 0.19814 −0.14872

where Ci(i = 1 − 9) are the arbitrary constants. Through boundary
conditions, the values of these constants are given by
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⎛
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⎞
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4. Convergence analysis and discussion

Auxiliary parameters play a fundamental role to standardize con-
vergence of solutions in series form. In HAM, the accurate selection
of these parameters is fundamental to regulate the convergence
of solutions. To pick apposite values of auxiliary parameters �f , �h
and �g , �-curves are plotted to 20th order of approximations. Fig. 1
shows that acceptable values of auxiliary parameters �f , �h and �g

are −1.8 ≤ �f ≤ −0.4, −2.1 ≤ �h ≤ −0.5 and −2.0 ≤ �g ≤ −0.4.
Table 1 displays that 35th order of approximations are acceptable
for series solution to converge for velocity, temperature and con-
centration profiles. Fig. 2 is plotted to observe the behavior of third
grade parameter b on velocity distribution. Increasing values of b

boosts the sheer thinning which eventually results in increasing

M

k k

Fig. 2. Graph of f/(g) versus g for different values of b.

M
k k

Fig. 3. Graph of h(g) versus g for different values of 41.

velocity profile. From Fig. 3, it is evident that temperature distribu-
tion is decreasing function of material parameter 41. Growing values
of material parameter corresponds to vigorous viscoelasticity. Sturdy
values of viscoelasticity causes reduction in temperature field. Fig. 4
evidently specifies that both temperature field and its associated
boundary layer thickness are enriched with higher values of Hart-
mann number M. Hartmann number has a direct proportionate with
Lorentz force. A fluid with mounting values of Hartmann number
has sturdier Lorentz force. Because of robust Lorentz force, tempera-
ture and its allied boundary layer thickness are increased for higher
values of Hartmann number. It is perceived from Fig. 5 that tem-
perature and its related boundary layer thickness are abridged for
higher values of Prandtl number Pr. A ratio of viscous to thermal
diffusivity is recognized as Prandtl number. A weaker thermal diffu-
sivity is encountered for larger Prandtl number and vice versa. This
reigning causes reduction in temperature distribution. Fig. 6 depicts
impact of Biot number c1 on temperature profile. It is clear from the
graph that temperature field is mounting function of Biot number.
Biot number has dependency on heat transfer coefficient. Large val-
ues of heat transfer coefficient lead to higher temperature. That is
why high temperature distribution is observed for increasing values
of Biot number. In Fig. 7 effect of k1 (amount of forte of homogeneous
reaction) on concentration profile is portrayed. As the reactants are
used up in a chemical reaction. Because of this fact concentration

k k

M

Fig. 4. Graph of h(g) versus g for different values of M.
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M
k k

Fig. 5. Graph of h(g) versus g for different values of Pr.

M

k k

Fig. 6. Graph of h(g) versus g for different values of c1.

field shows decreasing tendency for larger values of k1. From Fig. 8,
it is evident that concentration distribution is increasing function of
k2 (amount of forte of the heterogeneous reaction). Higher values of
k2 weaken diffusion coefficient and as a result less diffused parti-
cles strengthen the concentration field. Influence of Schmidt number
Sc on g(g) is given in Fig. 9. It is noted that concentration field is

M

k

k

Fig. 7. Graph of g(g) versus g for different values of k1.

M
k

k

Fig. 8. Graph of g(g) versus g for different values of k2.

an growing function of Schmidt number. The quotient of momen-
tum diffusivity to mass diffusivity is known as Schmidt number.
Higher Schmidt number corresponds to high momentum diffusiv-
ity which in turn increases the concentration distribution. In order
to analyze the heat transfer rate and friction of fluid in the vicin-
ity of the surface, results are plotted for local Nusselt number and
skin friction with respect to the various values of emerging phys-
ical parameters (see Figs. 10 and 11). Since the Prandtl number is
the ratio of dynamic viscosity to the thermal diffusivity, so when we
raise the values of Prandtl number then fluid molecules diffuse and
consequently energy will lose. The same situation arises in Fig. 10
for local Nusselt number with respect to the different values of Pr.
On the other hand, Nusselt number slightly varies due to increas-
ing values of Biot number. Fig. 11 demonstrates the simultaneous
effects of third grad parameter and Hartmann number. As per phys-
ical phenomena, highly viscous fluid leads to enhance the tendency
of drag with the surface, so when we increase the values of non-
Newtonian parameter gives the rise in the skin friction coefficient
and these results can be verified via Fig. 11. To control the random
motion of fluid particles magnetic strength is applied in the normal
direction at the surface of the sheet. One can find the Hartmann num-
ber leads to control the motion of fluid particles and restricts that
random motion of the particles in uniform manners. As a result fric-
tion with the surface of the sheet decreases with increasing values

M k k

Fig. 9. Graph of g(g) versus g for different values of Sc.
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Fig. 10. Graph of Nusselt number versus cPr.

M

C x

Fig. 11. Graph of Skin friction versus M versus b.

of M. Fig. 12 portrays impact of thermal relaxation parameter c on
temperature profile. It is perceived that snowballing values of ther-
mal relaxation parameter diminishes temperature profile. Additional
time is prerequisite for transmission of heat to adjacent particles
if thermal relaxation parameter is given escalating values. This fact
reveals that mounting values of thermal relaxation parameter casts
an insulated material which is accountable for declining tempera-
ture field. If we make c = 0, heat will transfer swiftly through the
material. That is why temperature field is stronger if c = 0 in case

M
k k

Fig. 12. Graph of h(g) versus g for different values of c.

Table 2
Comparison of CfxRe1/2

x for varied values.

41 42 b M Re Hayat et al. [37] Present

0.00 0.2 0.2 0.10 0.70 1.453 1.453
0.10 1.532 1.533
0.14 1.567 1.566
0.10 0.00 0.2 0.10 0.70 1.600 1.600

0.10 1.632 1.632
0.20 1.668 1.667

0.10 0.10 0.00 0.10 0.70 1.433 1.432
0.10 1.489 1.489
0.20 1.532 1.532

0.10 0.10 0.2 0.1 0.70 1.532 1.532
0.2 1.536 1.535
0.3 1.545 1.545

0.10 0.10 0.2 0.1 0.7 1.532 1.532
0.8 1.542 1.542
0.9 1.551 1.552

of Fourier Law in comparison to Cattaneo-Christov heat flux model.
Table 2 represents numerical values of Skin friction coefficient com-
pared with earlier published work [37] and results are found in good
agreement.

5. Final remarks

We in this paper have investigated effects of homogeneous-
heterogeneous reactions, magnetohydrodynamic and Cattaneo-
Christov heat flux on two dimensional third grade fluid with con-
vective boundary condition. Homotopy Analysis is summoned to
address system of equations with high nonlinearity. The main find-
ings of present investigation are summarized as given below:

• Homogeneous and heterogeneous reactions show opposing
behavior on Concentration distribution.

• Temperature field is growing function of Biot number.
• Prandtl number and thermal relaxation time show opposite

tendency on local Nusselt number.
• Increasing values of Hartmann number boosts temperature and

its allied boundary layer thickness.
• Temperature distribution is decreasing function of thermal

relaxation parameter.
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