TECTONIC ENVIRONMENT, STRUCTURAL STYLES AND HYDROCARBON PROSPECTS OF EASTERN POTWAR REGION, PAKISTAN

 $\gamma_{\rm pi}$

By

Muhammad Fahad Mahmood

Faculty of Earth and Environmental Sciences Bahria University

2007

ŝ.

TABLE OF CONTENTS

		1
Contents		PAGE NO
	Acknowledgement	01
	Abstract	02
Chapter # 1	INTRODUCTION	03
Chapter # 2	REGIONAL TECTONIC SETTING	08
Chapter # 3	STRATIGRAPHY OF EASTERN POTWAR	16
	a. Infra-Cambrian	17
	i. Jodhpur Formation	17
	ii. Bilara Formation	17
	iii. Salt Range Formation	17
	b. Paleozoic	18
	c. Cambrian	18
	i. Khewra Sandstone	19
	ii. Kussak Formation	19
	iii. Jutana Formation	19
	iv. Baghanwala Formation	19
	d. Permian	20
	i. Nilawahan Group	20
	1. Tobra Formation	20
	2. Dandot Formation	21
	3. Warchha Sandstone	21
	4. Sardhai Formation	22
	ii. Zaluch Group	22
	1. Amb Formation	23

	e. Cenozoic	23
	f. Tertiary	23
	g. Paleocene	24
	i. Hangu Formation	24
	ii. Lockhart limestone	24
	iii. Patala formation	25
	h. Eocene	26
	i. Nammal Formation	26
	ii. Sakesar Limestone	26
	iii. Chorgali Formation	27
	i. Oligocene	27
	j. Miocene – Pleistocene	28
	i. Rawalpindi Group	28
	1. Murree Formation	28
	2. Kamlial Formation	28
	ii. Siwaliks Group	29
	1. Chinji Formation	29
	2. Nagri Formation	29
	3. Dhok Pathan Formation	30
	4. Soan Formation	31
	k. Quaternary	31
Chapter # 4	TECTONIC ENVIRONMENT AND STRUCTURAL	
	STYLES OF POTWAR SUB – BASIN, A BRIEF	
	DESCRIPTION OF PREVIOUS WORK	36
Chapter # 5	SIGNIFICANCE OF TECTONIC	
	ENVIRONMENTS IN DEVELOPMENT OF	
	STRUCTURAL AND STRATIGRAPHIC TRAPS	45

II

Chapter # 6	RESERVOIR QUALITY	50
	a. Infra – Cambrian	50
	i. Jodhpur Formation	50
	ii. Bilara Formation	50
	iii. Salt Range Formation	51
	b. Cambrian	51
	i. Khewra Formation	51
	ii. Kussak Formation	51
	iii. Jutana Formation	51
	c. Permian	51
	i. Tobra Formation	51
	ii. Amb Formation	52
	d. Paleocene	52
	i. Patala Formation	52
	ii. Lockhart Formation	52
	e. Eocene	52
	i. Chorgali Formation	52
	ii. Sakesar Formation	52
	f. Producing Reservoirs in Potwar Sub – basin	53
	g. Producing Reservoirs of Eastern Potwar Region	53
Chapter # 7	SOURCE ROCK	54
	a. Infra – Cambrian	54
	i. Bilara Formation	54
	ii. Salt Range Formation	54
	b. Permian	54
	i. Amb Formation	54
	c. Paleocene	55
	i. Patala Formation	55
	d. Geochemistry of Source Rocks	55

Ш

	i. Total Organic Carbon contents	55
	ii. Bitumen contents	55
	iii. Genetic Potential	55
	e. Source Rock Commonly used Values for	
	Determination	56
	i. Total Organic Carbon	56
	ii. Genetic Potential	56
	iii. Hydrogen Index	56
	iv. Extractable Organic Matter	57
Chapter # 8	TECTONIC ENVIRONMENT AND STRUCTURAL	
	STYLES OF EASTERN POTWAR	58
	a. Seismic Interpretation Procedure	58
	b. Structural Patterns and Structural Styles	59
Chapter # 9	PRODUCING EXAMPLES	63
CONCLUSIONS		68
REFERENCES		69

ABSTRACT

There are two major sedimentary basins of Pakistan with Balochistan basin in the west and Indus basin in the east. The rifting that took place in the late Proterozoic of Gondwanaland super continent, resulted in the deposition of the Infra – Cambrian sediments. The evidence of rifting is clearly visible on the seismic profiles of Punjab platform and Potwar Sub – basin of Pakistan. Rock units ranging in age from Infra-Cambrian to Cambrian are exposed in the Potwar Province of the Indus Basin. Some wells drilled up to basement on Punjab Platform, Pakistan reveal that Bilara Formation followed by Jodhpur Formation also pertaining to Infra – Cambrian age underlies the Salt Range Formation. Two different tectonic regimes have been proposed in the post for Potwar Sub – Basin by various researchers. These regimes are thin skinned and thick skinned.

To identify the tectonic environment and structural styles of Eastern Potwar the structural interpretation of approximately 97-kilometer 2D seismic lines have been integrated with surface geological information. The study indicates that the structural patterns of Eastern Potwar have been developed as a consequence of transpressional wrench movements.

Several productive and potential reservoir intervals from Infra – Cambrian to Eocene have been identified. The organic-rich shales of the Paleocene can be considered as the main contender for sourcing the Potwar oil fields.