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Abstract The present study is carried out to see the thermal-diffusion (Dufour) and diffusion-thermo (Soret) effects
on the mixed convection boundary layer flow of viscoelastic nanofluid flow over a vertical stretching surface in a porous
medium. Optimal homotopy analysis method (OHAM) is best candidate to handle highly nonlinear system of differ-
ential equations obtained from boundary layer partial differential equations via appropriate transformations. Graphical
illustrations depicting different physical arising parameters against velocity, temperature and concentration distributions
with required discussion have also been added. Numerically calculated values of skin friction coefficient, local Nusselt
and Sherwood numbers are given in the form of table and well argued. It is found that nanofluid velocity increases
with increase in mixed convective and viscoelastic parameters but it decreases with the increasing values of porosity
parameter. Also, it is observed that Dufour number has opposite behavior on temperature and concentration profiles.
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1 Introduction

Heat transportation through a porous medium has

been a subject of interest due to its numerous industrial
applications including chemical catalytic reactors, high
performance insulation for buildings, movement of mois-
ture via air stringy insulations, packed sphere beds, grain

storage, in/out of heat between soil and surrounding, dis-
charge of salt from soil, electrochemical processes, solar
power collectors, insulation of nuclear reactors, geother-
mal energy systems and regenerative heat exchangers, etc.

Many interesting studies may be found in the literature.
Highlighting some of these may include books by Ingham
and Pop,[1] Nield and Bejan,[2] Pop and Ingham,[3] Bejan

et al.,[4] Vafai,[5] Vadasz[6] and Jansen and Dirk,[7] etc.
In double-diffusive (e.g. thermohaline) convection, the

dependency of fluid’s mixture density on temperature and
concentration results in coupling of heat and mass trans-
fer. As stated by Nield and Bejan,[1] this mixture den-

sity linearly depends on temperature and concentration
for suitably miniature isobaric changes in temperature and
concentration. In a number of situations when there is a
direct coupling between temperature and concentration,

the effects of cross-diffusion (Soret and Dufour) cannot
be ignored. In 1873, Dufour highlighted that composition
gradient results in energy flux. This phenomenon is known
as Dufour effect. However mass flux is an outcome of tem-

perature gradient. This effect is found by Soret and is

also named as thermo-diffusion effect. Postelnicu[8] found
that soret effect is very useful in separation of isotopes

and in mixture of gases with low (H2, He) and medium

(H2, air) molecular weights. Effects of Soret and Dufour

are neglected in many cases as their order of magnitude
is smaller than those of Fourier’s and Fick’s laws. Nev-

ertheless, exceptions can be considered. There are cases

where effects of Soret and Dufour cannot be ignored as

mentioned by Eckert and Drake.[9] Platten and Legros[10]

explored that Soret and Dufour effects are inoperative in

most liquid mixtures but in gases this law may not hold.

In liquids the order of magnitude of Soret effect’s coeffi-

cient is greater than that of Dufour effect. This fact is
stated by Mojtabi and Charrier–Mojtabi.[11] Ramzan et

al.[12] discussed collective consequences of Soret and Du-

four in magnetohydrodynamics stagnation point flow by
a permeable stretching cylinder. They concluded that by

increasing Dufour and Soret numbers, temperature and

concentration distributions show opposite behavior. Con-

vective three-dimensional flow of Maxwell fluid with Soret
and Dufour effects and chemical reaction is studied by

Hayat et al.[13] They found that Soret and Dufour num-

bers depict contradictory approach with increasing values

of temperature profile.

Boundary layer flows over stretched or moving sur-

faces are quite important in many industrial and metal-

lurgical processes. In particular, it contains paper man-
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ufacturing, glass-fiber, spinning of laments, unremitting
casting, rolling of hot sheets, crystal growing, cooling of
metal sheets or microelectronic chips, polymer in melting
form, preservation and/or aeration of paper and textiles
etc. Numerous investigations including numerical and an-
alytical studies highlighting different features can be seen
in (Ramzan and Farhan,[14] Shehzad et al.,[15] Makinde
and Aziz,[16] Malvandi et al.,[17] Cortell,[18] Ramzan and
Bilal,[19] Hayat et al.[20])

The miniaturization and efficiency of electronic devices
is need of today’s era as far as their perfection and meticu-
lousness is concerned. The exigent chore in manufacturing
these gadgets is their thermal performance. For instance,
in different engineering processes, ordinary base fluid does
not fulfill required cooling parameters. The introduction
of nanofluids has triumph this complexity and transfig-
ured the present industrial world with improved thermal
conductivity of the base fluid. Choi’s[21] coined work in-
vited the follower researchers to dig out more novel ideas
and has given a sound footing to the whole manufacturing
industry with practical applications, which include food
processing industry and automotives, fuel cells, hybrid-
powered engines, pharmaceutical applications, refrigera-
tion, chemical production, microelectronics cooling, trans-
portation, and many other applications. The cutting-edge
effort of Choi has been extended by many scientist and
researchers. For example Mushtaq et al.[22] presented nu-
merical solution of three-dimensional viscoelastic flow past
a nonlinear stretching sheet. Combination of RK method
with shooting approach is employed to address highly non-
linear differential equations. Three-dimensional elastico-
viscous nanofluid flow with magnetic field and chemical
reaction effects is studied by Ramzan and Bilal.[23] They
found series solutions for nonlinear differential equations
by Homotopy Analysis method. Dhanai et al.[24] studied
mixed convective nanofluid slip flow past an inclined cylin-
der with viscous dissipation. Fourth-order RKF method
with shooting technique is employed to solve the said prob-
lem numerically. Sheikholeslami and Ganji[25] analyzed
MHD three-dimensional nanofluid flow in a rotating sys-
tem. Numerical solution employing Fourth-order Runge–
Kutta method is obtained. Some more investigations in
this regard may be referred in Refs. [26–29].

The pivotal point of this investigation is to study
the effects of mixed convection and Soret–Dufour on the
flow of an incompressible viscoelastic nanofluid flow past
a porous media. Mixed convection, a combination of
free and forced convection which occur because of signifi-
cant temperature difference between wall and the ambient
fluid. Mixed convection has a vital role when the buoy-
ancy forces significantly disrupt the flow and the thermal
fields. On other hand, Soret and Dufour effects are imper-
ative for intermediate molecular weight gases in coupled
heat and mass transfer in binary systems, frequently oc-
cur in chemical process engineering. Optimal Homotopy
analysis method (OHAM) suggested by Liao[30] is used to

obtain the desired analytical solution. Many other prob-
lems of heat transfer and fluid mechanics have been solved
with the help of this popular method OHAM.[31−34] The
concept presented here is totally novel and has not been
discussed in the literature before. Illustrations highlight-
ing effects of protuberant parameters on velocity, tem-
perature and concentration transformations are presented
and argued. Numerically calculated tabulated results of
skin friction, local Nusselt and Sherwood numbers against
prominent arising parameters are presented and pondered.

2 Mathematical Formulation

We assume here an incompressible, two-dimensional
viscoelastic nanofluid flow with uniform ambient temper-
ature T∞ and uniform ambient concentration C∞ about a
stretching vertical surface with variable temperature and
concentration Tw(x), Cw(x) respectively, through a porous
medium. Effects of mixed convection and Soret and Du-
four are also considered. Surface is stretched linearly with
the velocity uw(x) = ax, where a is a constant. Boussin-
seq’s approximation for temperature and concentration
gradient are assumed due to presence of buoyancy and
density variation effects. In view of above specified as-
sumptions, boundary layer equations of the said system
are given by:

∂u

∂x
+
∂v

∂y
= 0 , (1)

u
∂u

∂x
+ v

∂u

∂y
= υ

∂2u

∂y2
+ k0

(

u
∂3u

∂x∂y2
+
∂u

∂x

∂2u

∂y2

+
∂u

∂y

∂2v

∂y2
+ v

∂3u

∂y3

)

− ν

K
u

+ g[βT (T − T∞) + βC(C − C∞)] , (2)

u
∂T

∂x
+ v

∂T

∂y
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∂2T

∂y2
+
DeKT

CsCp

∂2C

∂y2

+ τ
[

DB
∂C

∂y

∂T

∂y
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(∂T

∂y

)2]

, (3)

u
∂C

∂x
+ v

∂C

∂y
=
DeKT

Tm

∂2T

∂y2
+DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
. (4)

The appropriate boundary conditions are

u = uw(x) = ax , v = 0 ,

T = Tw(x) = T∞ + bx ,

C = Cw(x) = C∞ + cx at y = 0 ,

u→ 0,
∂u

∂y
→ 0, T → T∞ ,

C → C∞ as y → ∞ , (5)

where u and v are velocity component along and normal to
the plate in x and y direction respectively. Here, k0, αm, g,
T , τ , DT , and DB are viscoelastic parameter, thermal dif-
fusivity, acceleration due to the gravity, fluid temperature,
ratio of effective heat capacity of the nanoparticle mate-
rial to base fluid heat capacity, thermophoretic diffusion
coefficient and Brownian motion coefficient. Moreover,
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a > 0, b and c > 0 are constants with b > 0, Tw > T∞ for
heated plate and b < 0, Tw < T∞ for a cooled surface.

Defining

ψ = x
√
aνf(η), θ(η) =

T − T∞
Tw − T∞

,

φ(η) =
C − C∞

Cw − C∞

, η =

√

a

ν
y , (6)

condition of Eq. (1) is automatically fulfilled whereas
Eqs. (2) to (4) take the form

f ′′′ + ff ′′ − f ′2 −K(ff iv − 2f ′f ′′′ + f ′2) − γf ′

+λ(θ +Nφ) = 0 , (7)

1

Pr
θ′′ + fθ′ − θf ′ + Dfφ′′ + Nbθ′φ′ + Ntθ′2 = 0 , (8)

φ′′ + PrLe(fφ′ − φf ′) + SrLeθ′′ +
Nt

Nb
θ′′ = 0 , (9)

f(0) = 0, f ′(0) = 1, θ(0) = 1 ,

φ(0) = 1, f ′(∞) → 0 , (10)

θ(∞) → 0, φ(∞) → 0 ,

with K(> 0), Le = αm/De, N, Pr = ν/αm, λ, γ, Df,
Sr, Nt, and Nb are dimensionless viscoelastic param-
eter, Lewis number, constant dimensionless concentra-
tion buoyancy parameter, Prandtl number, dimensionless
mixed convection parameter, dimensionless porosity pa-
rameter, Dufour number, Soret number, thermophoresis
parameter and Brownian motion parameter respectively
and are given by

λ =
gβ

T
b

a2
=
gβT (Tw − T∞)x3/υ2

u2
wx

2/υ2
=

Grx

Re2
x

,

K =
k0a

ν
, γ =

ν

aK
, N =

βC(Cw − C∞)

βT (Tw − T∞)
,

Df =
DeKT (Cw − C∞)

CsCp(Tw − T∞)υ
, Sr =

DeKT (Tw − T∞)

Tmαm(Cw − C∞)
,

Nb =
τDB(Cw − C∞)

ν
, Nt =

τDT (Tw − T∞)

T∞ν
, (11)

where Grx and Rex = uwx/ν are local Grashof and local
Reynolds numbers respectively. Here, λ = 0 for forced
convection flow, λ < 0 relates to opposing flow (cooled
plate) and λ > 0 corresponds to assisting flow (heated
plate).

Skin friction coefficient (Cf ), the local Nusselt (Nux)
and the Sherwood (Sh) numbers are given by

Cf =
τw

ρu2
w/2

, Nux =
xqw

k(Tw − T∞)
,

Sh =
xjw

DB(Tw − T∞)
, (12)

where τw is wall skin friction, qw is wall heat flux, and jw
is mass flux from the plate. These are given by

τw = µ
(∂u

∂y

)

y=0
+ k0

(

u
∂2u
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∂2u

∂y2
− 2
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y=0
,

qw = −k
(∂T

∂y
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(∂C
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)

y=0
. (13)

Dimensionless forms of Skin friction coefficient, the lo-
cal Nusselt number, and the local Sherwood number are
given by

CfRe1/2
x = (1 + 3K)f ′′(0), NuxRe−1/2

x = −θ′(0) ,

ShRe−1/2
x = −φ′(0) . (14)

3 Homotopy Analysis Solutions

The velocity, temperature, and concentration distribu-
tions in form of base functions

{ηk exp(−nη)|k > 0, n > 0} ,
can be expressed as

f(η) = a0
0,0 +

∞
∑

n=0

∞
∑

k=0

ak
m,nη

k exp(−nη) , (15)

θ(η) =

∞
∑

n=0

∞
∑

k=0

bkm,nη
k exp(−nη) , (16)

φ(η) =

∞
∑

n=0

∞
∑

k=0

ckm,nη
k exp(−nη) , (17)

in which ak
m,n, b

k
m,n, and ckm,n are the coefficients. Ini-

tial guesses and auxiliary linear operators are given in the
following manner:

f0(η) = 1 − exp(−η) , (18)

θ0(η) = exp(−η) , (19)

φ0(η) = exp(−η) , (20)

Lf =
d3f

dη3
− df

dη
, (21)

Lθ =
d2θ

dη2
− θ , (22)

Lφ =
d2φ

dη2
− φ , (23)

satisfying the following properties

Lf [C1 + C2 exp(η) + C3 exp(−η)] = 0 , (24)

Lθ[C4 exp(η) + C5 exp(−η)] = 0 , (25)

Lφ[C6 exp(η) + C7 exp(−η)] = 0 , (26)

where Ci (i = 1–7) are the arbitrary constants.

3.1 zeroth Order Deformation Problems

If p ∈ [0, 1] is an embedding parameter and ~f , ~θ

and ~φ represent the non-zero auxiliary parameters. The
zeroth-order deformation problems are:

(1 − p)Lf [f̂(η, p) − f0(η)]

= p~fNf [f̂(η, p), θ̂(η, p), φ̂(η, p)] , (27)

(1 − p)Lθ[θ̂(η, p) − θ0(η)]

= p~θNθ[f̂(η, p), θ̂(η, p), φ̂(η, p)] , (28)

(1 − p)Lφ[φ̂(η, p) − φ0(η)]

= p~φNφ[f̂(η, p), θ̂(η, p), φ̂(η, p)] , (29)

f̂(η; p)|η=0 = 0,
∂f̂(η; p)

∂η

∣

∣

∣

η=0
= 1 ,
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∂f̂(η; p)

∂η
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= 0 , (30)

θ̂(η; p)|η=0 = 1, θ̂(η; p)|η=∞ = 0 , (31)

φ̂(η; p)|η=0 = 1, φ̂(η; p)|η=∞ = 0 , (32)

in which the nonlinear operators Nf , Nθ, and Nφ are
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For p = 0 and p = 1, we have

f̂(η; 0) = f0(η), f̂(η; 1) = f(η) , (36)

θ̂(η; 0) = θ0(η), θ̂(η; 1) = θ(η) , (37)

φ̂(η; 0) = φ0(η), φ̂(η; 1) = φ(η) . (38)

Expanding f̂(η, p), θ̂(η; p), and φ̂(η; p) in Taylor’s the-

orem with respect to an embedding parameter p, one has

f̂(η; p) = f0(η) +

∞
∑
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fm(η)pm, (39)
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∑
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The convergence at p = 1 of Eqs. (39)–(41) depend on

proper choice of auxiliary parameters, then we have

f(η) = f0(η) +

∞
∑

m=1

fm(η) , (43)

θ(η) = θ0(η) +

∞
∑

m=1

θm(η) , (44)

φ(η) = φ0(η) +

∞
∑
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φm(η) . (45)

3.2 m-th Order Deformation Problems

The m-th order deformation problems are of the form

Lf [fm(η, p) − χmfm−1(η)] = ~fR
f
m(η) , (46)

Lθ[θm(η, p) − χmθm−1(η)] = ~θR
θ
m(η) , (47)

Lφ[φm(η, p) − χmφm−1(η)] = ~φR
φ
m(η) , (48)

with boundary conditions

fm(0) = f ′

m(0) = f ′

m(∞) = 0 , (49)

θm(0) = θm(∞) = 0 , (50)

φm(0) = φm(∞) = 0 , (51)
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0, m 6 1 ,

1, m > 1 .
(55)

In the form of special solutions f∗

m(η), θ∗m(η), and

φ∗m(η), the general solutions are assumed to be

fm(η) = f∗

m(η) + C1 + C2 exp(η) + C3 exp(−η) , (56)

θm(η) = θ∗m(η) + C4 exp(η) + C5 exp(−η) , (57)

φm(η) = φ∗m(η) + C6 exp(η) + C7 exp(−η) . (58)



No. 1 Communications in Theoretical Physics 137

Here, constants Ci (i = 1–7) through boundary condi-
tions (49)–(51) are appended as

C2 = C4 = C6 = 0, C3 =
∣

∣

∣

∂fm(η)

∂η

∣

∣

∣

η=0
, (59)

C1 = −C3 − fm(0), C5 = −θm(0) ,

C7 = −φm(0) . (60)

4 Optimal Convergence Control Parameters

Average squared residual errors suggested by Liao[31] have been employed to optimize values of auxiliary parameters
~f , ~θ, and ~φ by using the concept of minimization.

ǫfm =
1

k + 1

k
∑

j=0

[

Nf

(

m
∑

i=0

f̂(η),

m
∑

i=0

θ̂(η),

m
∑

i=0

φ̂(η)
)

η=jδη

]2

· dη , (61)
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· dη , (62)

ǫφm =
1

k + 1

k
∑

j=0

[

Nφ

(
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∑
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f̂(η),

m
∑

i=0

θ̂(η),

m
∑

i=0

φ̂(η)
)

η=jδη

]2

· dη , (63)

where k in an integer. The total squared residual error is
given by

ǫtm = ǫfm + ǫθm + ǫφm, (64)

with δη = 0.5 and k = 20.These errors are minimized with
the help of Mathematica BVPh 2.0. The optimal conver-
gent control parameters at 3rd order of approximations
are ~f = −0.752 93, ~θ = −0.907 38 and ~φ = −0.933 951
with total averaged squared error ǫtm = 0.000 018 021 9.
Table 1 represents different averaged squared residual er-
rors for m = 3 with γ = λ = Le = Pr = 1, Df = 0.1,
Sr = 0.2, Nb = 0.7, N = 0.5 and Nt = 0.1. It is ob-
served that averaged squared residual errors decrease for
increasing higher order approximations. Figure 1 is plot-
ted to depict the behavior of average squared residual er-
ror Co = (~f = ~θ = ~φ) against one optimal value of all
three auxiliary control parameters ~f , ~θ and ~φ at 2nd, 6th

and 10th iterations using Mathematica package BVPh 2.0.
It is found that as we increase the order of iteration the
corresponding value of the optimal convergence control
parameter is converging to −1.38 approximately.

Fig. 1 Minimum averaged squared residual errors for
2nd, 6th and 10th order of approximations.

Table 1 Averaged squared residual errors for different
order of approximations.

m ǫ
f
m ǫθ

m ǫ
φ
m

2 2.31 × 10−5 5.29 × 10−5 1.09 × 10−4

6 4.91 × 10−8 7.32 × 10−8 5.28 × 10−8

10 1.06 × 10−9 9.76 × 10−9 2.34 × 10−8

16 7.27 × 10−12 4.02 × 10−11 7.36 × 10−11

20 6.21 × 10−14 1.42 × 10−12 3.82 × 10−12

26 3.25 × 10−15 2.51 × 10−14 5.1 × 10−14

30 1.74 × 10−16 1.13 × 10−15 2.08 × 10−15

5 Results and Discussion

Figures 2–21 are sketched to understand the effects of
different arising parameters on velocity, temperature, and
concentration profiles. Tabulated numerical values of skin
friction coefficient parameter, local Nusselt and Sherwood
numbers are also depicted in Tables 2 and 3 for numerous
involved parameters. Figures 2, 3, and 4 illustrate the im-
pact of viscoelastic parameter K on the fluid motion and
consequently on dispersion of temperature and concentra-
tion profiles through the sheet as the time passes. The
graphs clearly show that increasing values of viscoelastic
parameter aids fluid’s motion that is further away from
the stretching sheet and offers resistance to the motion of
the liquid nearer to the surface. Higher values of second-
grade parameter is responsible for fluid’s faster flow be-
cause of deterioration in the heat transfer. That is why
escalation in momentum boundary layer and decrease in
thermal and concentration boundary layers are encoun-
tered. Effect of porosity parameter γ on velocity profile
is depicted in Fig. 5. It is observed that velocity profile
decreases against increasing values of porosity parameter.
Smaller permeability parameter is due to higher poros-
ity parameter, which causes reduction in fluid’s velocity.
The graphs of mixed convective parameter against veloc-
ity, temperature and concentration profiles are plotted in
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Figs. 6–8. It is observed from Fig. 6 that higher values of
mixed convective parameter give rise to velocity profile.
It is because of the fact that larger values of mixed con-
vection parameter relates to the higher thermal buoyancy

force which is accountable in enrichment of the velocity

profile and reduction in temperature and concentration

profiles (Figs. 7 and 8).

Fig. 2 Influence of K on f ′(η). Fig. 3 Influence of K on θ(η).

Fig. 4 Influence of K on φ(η). Fig. 5 Influence of γ on f ′(η).

Fig. 6 Influence of λ on f ′(η). Fig. 7 Influence of λ on θ(η).

Fig. 8 Influence of λ on φ(η). Fig. 9 Influence of Pr on θ(η).
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Fig. 10 Influence of Pr on φ(η). Fig. 11 Influence of Le on θ(η).

Fig. 12 Influence of Le on φ(η). Fig. 13 Influence of Df on θ(η).

Fig. 14 Influence of Df on φ(η). Fig. 15 Influence of Sr on φ(η).

Fig. 16 Influence of Nb on θ(η). Fig. 17 Influence of Nb on φ(η).

Figures 9 and 10 are plotted to understand the effects of Prandtl number Pr on temperature and nanoparticle concen-
tration fields. Thinner thermal and nanoparticle concentration boundary layer thickness are observed with increase in
values of Prandtl number. Low thermal diffusivity is witnessed for higher Prandtl numbers which is main source for
reedier thermal and nanoparticle concentration boundary layer thicknesses. Figures 11 and 12 are drawn to depict the
effects of Lewis number Le on temperature and concentration fields respectively. For gradual increasing values of Lewis
number, feeble molecular diffusivity and thinner boundary layer thickness is observed that eventually show decrease
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in temperature and concentration fields. Influence of Dufour number on temperature and concentration profiles is
depicted in Figs. 13 and 14.

Fig. 18 Influence of Nt on θ(η). Fig. 19 Influence of Nt on φ(η).

Fig. 20 Influence of Pr and Le on −θ′(0). Fig. 21 Influence of Nb and Nt on −φ′(0).

Table 2 Values of the skin friction coefficient CfRe
1/2

x , local Nusselt number

NuxRe
−1/2

x and the local Sherwood number ShRe
−1/2

x for some values of K, γ, λ,

N and Pr when Le = 1.0, Sr = 0.2, Nb = 0.7, Df = Nt = 0.1.

K γ λ N Pr −Cf Re
1/2

x −NuxRe
−1/2

x −ShRe
−1/2

x

0.1 1.0 1.0 −0.2 1.0 1.299 15 0.730 67 0.865 86

0.0 1.042 09 0.725 51 0.857 85

0.2 1.541 81 0.735 16 0.872 95

0.4 1.994 53 0.742 71 0.885 16

0.0 0.767 65 0.784 37 0.951 83

0.5 1.051 34 0.755 98 0.906 75

1.5 1.520 96 0.708 02 0.830 07

0.0 1.752 92 0.667 93 0.759 83

0.5 1.513 80 0.705 14 0.824 00

1.2 1.217 63 0.739 27 0.879 65

−0.5 1.454 97 0.712 18 0.835 02

0.0 1.200 17 0.741 24 0.883 08

0.5 0.965 54 0.763 66 0.919 19

0.7 1.270 35 0.654 37 0.679 26

1.2 1.312 18 0.758 85 0.982 49

1.5 1.326 21 0.776 65 1.148 38

A gradual growth in temperature distribution is seen with

increasing values of Dufour number. However, an opposite

behavior is noticed in case of concentration profile. Effect

of Soret number Sr on nanoparticle concentration field is

illustrated in Fig. 15. It is observed that Soret number has

a steadier and abetting effect on the concentration profiles

throughout the boundary layer regime. With increase in

Brownian motion parameter Nb, added heat will be gener-

ated due random motion of fluid particles which causes in-

crease in temperature profile. This influence is portrayed
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in Fig. 16. Effect of Brownian motion parameter Nb on
concentration field is shown in Fig. 17. It is observed that
increasing values Brownian motion parameter Nb results
in escalation in random motion and collision of the macro-
scopic particles and eventually a decrease in fluid’s concen-
tration. Figures 18 and 19 are sketched to inspect the vari-
ation in the temperature and nanoparticle concentration
for gradual increasing values of thermophoresis parameter
Nt. The larger values of thermophoresis parameter result

in high thermal and nanoparticle concentration boundary

layer thicknesses. Figures 20 displays the behavior of Pr

and Le on local Nusselt number. It is examined that local

Nusselt number increases for larger values of Pr while de-

creases with increase in Le. Characteristics of Nb and Nt

on local Sherwood number are demonstrated in Fig. 21.

Local Sherwood number increases for larger values of Nb

and decreases for higher values of Nt.

Table 3 Values of the skin friction coefficient CfRe
1/2

x , local Nusselt number

NuxRe
−1/2

x and the local Sherwood number ShRe
−1/2

x for some values of Sr, Df,
Le, Nb, Nt when K = 0.1, γ = λ = Pr = 1.0, N = −0.5.

Le Df Sr Nb Nt −Cf Re
1/2

x −NuxRe
−1/2

x −ShRe
−1/2

x

0.7 0.1 0.2 0.7 0.1 1.316 66 0.769 10 0.655 31

1.2 1.290 95 0.709 87 0.988 80

1.5 1.281 74 0.683 39 1.154 09

0.2 1.285 38 0.687 16 0.883 01

0.3 1.271 64 0.641 70 0.900 33

0.5 1.244 09 0.544 82 0.93 617

0.0 1.291 30 0.714 55 0.952 76

0.3 1.303 12 0.739 22 0.819 85

0.5 1.311 33 0.757 36 0.722 15

0.3 1.328 10 0.843 88 0.726 48

0.5 1.312 02 0.884 51 0.820 12

1.0 1.281 93 0.957 02 0.907 09

0.3 1.299 62 0.709 13 0.757 32

0.5 1.299 93 0.688 90 0.656 24

0.7 1.300 11 0.669 95 0.561 71

Tables 2 and 3 display the numerical values of skin
friction, local Nusselt, and local Sherwood numbers. It
is witnessed that skin friction coefficient grows for higher
values of K, γ, Pr, Sr, and Nt. Nevertheless, it decreases
when values of λ, N , Le, Df and Nb. Local Nusselt num-
ber increases for increasing values of K, λ, N , Pr, Sr and
Nb and decreases for increasing values of γ, Le, Df and
Nt. It is also found that sherwood number increasing for
larger values of K, λ, N , Pr, Le, Df and Nb and decreasing
for higher values of γ, Sr and Nt.

6 Conclusion

Optimal solutions has been obtained for the bound-
ary layer flow of viscoelastic nanofluid about a stretching
vertical surface affected by Brownian and thermophore-
sis motions in the presence of mixed convection and Soret
and Dufour effects past a porous media. A suitable sim-
ilarity transformation is used to convert the momentum
and the energy and concentration equations into a set of
ordinary differential equations, which are solved by using
Homotopy Analysis method. Salient features of presented
investigation are:

• The nanofluid velocity increases with increase in

mixed convective and viscoelastic parameters but it
decreases with the increasing values of porosity pa-
rameter.

• Prandtl and Lewis numbers have similar effects on
temperature and concentration profiles.

• Local Sherwood number decreases for higher val-
ues of thermophoresis parameter and increases for
higher values of Brownian motion parameter.

• Brownian motion parameter has opposite influence
on temperature and concentration profiles but sim-
ilar effect is observed in case of thermophoresis pa-
rameter.

• Soret and Dufour numbers have opposite effect on
concentration profile.

• Local Nusselt number increases for higher values of
Prandtl number whereas it decreases with increase
in values of Lewis number.

• Dufour number has opposite behavior on tempera-
ture and concentration profiles.
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