CRETACEOUS AND JURASSIC RESERVOIR EVALUATION OF NANDPUR AND PANJPIR GAS FIELD, CENTRAL INDUS BASIN, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of MS in Geology

KHALID NAZIR

Department of Earth and Environmental Sciences Bahria University, Islamabad

2013

ABSTRACT

The main objective of the research is to evaluate the hydrocarbon potential of the Nandpur and Panjpir gas field. Nandpur and Panjpir gas fields are located in the Punjab Platform, District Multan in Punjab province of Pakistan. In Nandpur gas Field Lumshiwal,Samanasuk and Shinawari Formations are acting as a potential reservoir. In Panjpir gas field Samansuk Formation is acting as potential reservoir.

In the present study hydrocarbon potential of Nandpur and Panjpir gas fields has been interpreted by evaluating the well logs of one exploratory well (Panjpir-01) and two development wells (Panjpir-05 and Nandpur-02) in terms of reservoir evaluation. Nandpur and Panjpir gas fields has been evaluated on the basis of well logs. In this research study the well data of Nandpur 02, Panjpir 01 and Panjpir 05 (located in Central Indus Basin) was acquired from Land Mark Resources (LMKR), Pakistan with prior permission from Directorate General of Petroleum Concession (DGPC). Sonic Log, Neutron Log, Density Log, Gamma ray Log, SP and Resistivity Logs were analyzed for petrophysical analysis. The petrophysical properties which have been determined include shale volume, effective porosity, saturation of water and hydrocarbon.

On the basis of the stratigraphic correlation better quality reservoirs are expected in the southern portion because thickness is increasing towards south. In this correlation Lumshiwal and Shinawari Reservoirs are increasing towards south while Samanasuk is showing same thickness. On the basis of all these delineated petrophysical parameters it has been determined that Nandpur and Panjpir Fields has great potential to produce viable hydrocarbons.

ACKNOWLEDGEMENTS

I am grateful to my supervisor Mr.Saqib Mehmood, Assistant Professor, Department of Earth and Environmental Sciences Bahria University, Islamabad, for his endless support and encouragement during this study. His suggestions and help were integral to the timely completion of this study. I would like to pay special thanks to my co-supervisor Mr. Mohsin Munir, Assistant Geologist, OGDCL, for his kind supervision, valuable and expert guidance and inspiration bring this research to success. Mr. Ahsan Javed, Assistant Petrophysicist, OGDCL is also thanked for providing me with their support.I gratefully acknowledge the guidance and resources provided by Dr. Muhammad Zafar, Head of Department, Earth and Environmental Sciences, Bahria University, Islamabad. I am also thankful to Prof. Dr.Tahseenullah Khan, Department of Earth and Environmental Sciences, Bahria University, Islamabad, for critically viewing this thesis.

I would also like to express my heartiest and special gratitude to all my respected and honorable teachers of the department of Earth and Environmental Sciences, Bahria University, Islamabad.

CONTENTS

		Page
ABS	TRACT	i
ACK	NOWLEDGEMENTS	ii
CONTENTS		iii
FIGURES		vi
TAB	TABELS	
	CHAPTER 1	
	INTRODUCTION	
1.1	Exploration history of study area	2
1.2	Nandpur gas field	3
1.3	Panjpir gas field	3
1.4	Objectives of current study	4
1.5	Data used	4

CHAPTER 2

REGIONAL GEOLOGY

2.1	Regional geological settings	5
2.2	Structural pattern of Punjab Platform	6
2.3	Tectonic setting of Punjab Platform	7
2.4	Geology of Punjab Platform	8
2.5	Generalized stratigraphy of Punjab Platform	9
2.6	Stratigraphy of study area	11
2.6.1	Kingriali Formation	11
2.6.2	Datta Formation	11
2.6.3	Shinawari Formation	11
2.6.4	Samana Suk Formation	11
2.6.5	Chichali Formation	11
2.6.6	Lumshiwal Formation	12
2.6.7	Rnikot Formation	12
2.6.8	Dungan Formation	12
2.6.9	Nammal Formation	12

2.6.10	Sakessar Formation	13
2.6.11	Chinji Formation	13
2.6.12	Nagri Formation	13
2.7	Petroleum geology of the area	14
2.7.1	Hydrocarbon potential	14
2.7.2	Petroleum system	15
2.7.3	Source rocks	15
2.7.4	Reservoir rocks	15
2.7.5	Cap rocks	15

CHAPTER 3

FORMATION EVALUATION

3.1	Introduction	17
3.1.1	Methodology	17
3.1.2	Marking zone of interest	18
3.1.3	Calculation of volume of shale	18
3.1.4	Porosity calculation	18
3.1.5	Rw calculation method	20
3.1.6	Water saturation	20
3.1.7	Hydrocarbon saturation	21
3.1.8	Net pay	21

CHAPTER 4

PETROPHYSICAL ANALYSIS

4.1	Introduction	22
4.2	Creating wireline logs	22
4.3	Uses of petrophysical analysis	23
4.4	Well data description	23
4.5	Methods of petrophysical analysis	27
4.5.1	Raw log curves	28
4.5.2	Edit well logs	28
4.6	Petrophysical analysis methodology	29
4.7	Petrophysical interpretation of Panjpir-01	32

4.7.1	Interpretation of zone-1	32
4.7.2	Interpretation of zone-2	34
4.8	Interpretation of Panjpir-05	35
4.8.1	Interpretation of zone-1	35
4.8.2	Interpretation of zone-2	36
4.9	Interpretation of Nandpur-02	37
4.9.1	Interpretation of zone-1	37
4.9.2	Interpretation of zone-2	38
4.9.3	Interpretation of zone-3	39
4.9.4	Stratigraphic correlation	40
4.9.5	Structural correlation	42
	CONLUSIONS	44
	REFERENCES	45
	APPENDICES	46

FIGURES

Figure 1.1	Location map of study area.	2
Figure 2.1	Tectonic settings of Punjab Platform.	6
Figure 2.2	Central Indus Basin and the subdivision into petroleum	
	zones.	7
Figure 2.3	Generalized stratigraphy of the Punjab Platform, Central	
	Indus Basin.	10
Figure 3.1	Workflow of petrophysical interpretation.	17
Figure 4.1	Workflow chart for petrophysical analysis.	27
Figure 4.2	Dialog box that is used to define the log curve units.	28
Figure 4.3	Dialog box that is used to define the log curve range (End	
	points).	29
Figure 4.4	Log curves response in Panjpir-01 (zone-1)	32
Figure 4.5	Log curves response in Panjpir-01 (zone-2).	34
Figure 4.6	Log curves response in Panjpir-05 (zone-1)	35
Figure 4.7	Log curves response in Panjpir-05 (zone-02).	36
Figure 4.8	Log curves response in Nandpur-02 (zone-1).	37
Figure 4.9	Log curves response in Nandpur-02 (zone-02).	38
Figure 4.10	Log curves response in Nandpur-02 (zone-03).	39
Figure 4.11	Stratigraphic correlation.	41
Figure 4.12	2 Structural correlation.	43

TABLES

Table 2.1	Stratigraphic sequence of study area (adapted form log		
	analysis).	14	
Table 2.2	General Petroleum Geology of Central Indus Basin.	16	
Table 4.1	Values used for petrophysical analysis in Geographix		
	software.	32	
Table 4.2	Petrophysical results for Panjpir-01 well (Zone 01).	33	
Table 4.3	Petrophysical results for Panjpir-01 well (Zone 02).	34	
Table 4.4	Petrophysical results for Panjpir-05(Zone 01).	36	
Table 4.5	Petrophysical results for Panjpir-05 well (Zone 02).	37	
Table 4.6	Petrophysical results for Nandpur-02 well (Zone 01).	38	
Table 4.7	Petrophysical results for Nandpur-02 well (Zone 02).	39	
Table 4.8	Petrophysical results for Nandpur-02 well (Zone 03).	40	