Petrophysical & Petrographical Analyses of Mari X-1, X-2 & X-3 Gas Wells of Mari Gas Field, Central Indus Basin, Pakistan

BY:

Muhammad Usman

Humair Ali

Faculty of Earth & Environmental Sciences Bahria University Islamabad

Session 2007-08

CONTENTS

Acknowledgement Abstract	I II
List of Figures	III
List of Tables	VI

CHAPTER NO.1

INTRODUCTION

1. General Introduction	01
1.1. Aim of Study	01
1.2. Location and Accessibility	01

CHAPTER NO.2

EXPLORATION HISTORY AND PETROLEUM PROSPECTS

2.1. Exploration History042.2. Development History042.3. Future Performance052.4. Petroleum Prospects of Study Area052.5. Hydrocarbon Potential of Study Area062.5.1 Habib Rahi Limestone062.5.2. Lower Goru Sands072.6. Reservoir Engineering082.7. Production Engineering082.8. Compression12	2. Introduction	04
2.2. Development History042.3. Future Performance052.4. Petroleum Prospects of Study Area052.5. Hydrocarbon Potential of Study Area062.5.1 Habib Rahi Limestone062.5.2. Lower Goru Sands072.6. Reservoir Engineering082.7. Production Engineering08		04
2.3. Future Performance052.4. Petroleum Prospects of Study Area052.5. Hydrocarbon Potential of Study Area062.5.1 Habib Rahi Limestone062.5.2. Lower Goru Sands072.6. Reservoir Engineering082.7. Production Engineering08	-	04
2.4. Petroleum Prospects of Study Area052.5. Hydrocarbon Potential of Study Area062.5.1 Habib Rahi Limestone062.5.2. Lower Goru Sands072.6. Reservoir Engineering082.7. Production Engineering08		05
2.5. Hydrocarbon Potential of Study Area062.5.1 Habib Rahi Limestone062.5.2. Lower Goru Sands072.6. Reservoir Engineering082.7. Production Engineering08		05
2.5.1 Habib Rahi Limestone062.5.2. Lower Goru Sands072.6. Reservoir Engineering082.7. Production Engineering08		06
2.5.2. Lower Gord Saids 08 2.6. Reservoir Engineering 08 2.7. Production Engineering 08 12 12	-	06
2.7. Production Engineering 08	2.5.2. Lower Goru Sands	07
2.7. Production Engineering	2.6. Reservoir Engineering	08
2.8. Compression 12	2.7. Production Engineering	08
	2.8. Compression	12

CHAPTER NO 3

TECTONIC SETTING AND STRUCTURAL STYLE

3. Introduction	13
3.1. Tectonic Settings	13
3.2. Structural Style of Mari Field	16

CHAPTER NO 4

STRATIGRAPHY

4. Stratigraphy of Central Indus Basin	25
4.1. Stratigraphy of Study Area	26
4.2. Oligocene Succession	27
4.2.1. Nari Sandstone	27
4.2.2. Nal Member	27
4.3. Middle Eocene Succession	27
4.3.1. Pirkoh Limestone Member	27
4.3.2. Sirki Member	27
4.3.3. Habib Rahi Limestone member	28
4.4. Lower Eocene Succession	28
4.4.1. Ghazij Formation	28
4.5. Upper Paleocene Succession	29
4.5.1. Dungan Formation	29
4.6. Lower Paleocene Succession	29
4.6.1. Upper Ranikot formation	29
4.6.2. B-Lower Ranikot formation	29
4.7. Cretaceous Succession	29
4.7.1. Pab Sandstone	29
4.7.2. Parh Formation	30
4.7.3. Goru Formation	30
4.7.4. Sembar Formation	30

CHAPTR NO 5

METHODOLOGY-FORMATION EVALUATION

5. Introduction	31
5.1. Coring	32
5.2. Mud logging	32
5.3. Wire-line logging	33
5.4. Generation of well logs	34
5.5. Importance of Wire-line logs	40
5.6. Classification of logging tools	41
5.7. E-Log Types	42
5.7.1. Spontaneous Potential log	42
5.7.2. Gamma Ray log	46
5.7.3. Sonic log	49
5.7.4. Density log	52
5.7.5. Resistivity logs	55
5.7.6. Lateral log	60
5.8. Log Selection	63
5.9. Types of Logs for Various Borehole Conditions	64
5.10. Company Tools	67
5.10.1. The 36 Baker Hughes tools	67
5.10.2. The 6 Halliburton tools	69
5.10.3. The 54 Schlumberger tools	69
5.11. Interpretation work flow	71

CHAPTER NO 6

PETROPHYSICAL INTERPRETATION OF SELECTED WELLS

5. Introduction	72
5.1. Methodology	72
6.1.1. Lithology	72

6.1.2. Calculation of Shale Volume (Vsh)	72
6.1.3. Calculation of Porosity	79
6.1.4. Calculation of Resistivity of Water Rw	80
6.1.5. Calculation of Water Saturation (Sw)	83
6.1.6. Calculation of Hydrocarbon Saturation (SHC)	83
6.2. Interpretation and Discussion of Logs	84
6.2.1. Calculated Volume of Shale	84
6.2.2. Calculated Porosity	85
6.2.3. Calculated Sw and SHC	88
6.3. Production Testing	91
6.3.1. Production Testing of Mari X-1	91
6.3.2. Production Testing of Mari X-2	95

CHAPTER NO 7

PETROGRAPHICAL ANALYSIS OF CORE SAMPLES

7. Methodology	97
7.1. Lithology	97
7.1.1. Sandstone	97
7.1.2. Glauconitic Sandstone	98
7.1.3. Glauco-Arenite	98
7.1.4. Limestone	98
7.1.5. Claystone	98
7.2. Field Observations of Cretaceous Core Samples	99
7.3. Petrographical Analysis of Cretaceous Core Samples	100
7.4. Microphotographs of Core Data	103
7.5. Depositional Environment	117
CONCLUSIONS	119
REFRENCES	120

Annexure; Original well completion logs

ABSTRACT

To study reservoir rocks of the Mari Gas Field, the Petrophysical and Petrographical studies has been carried out in Mari X-1, X-2 & X-3 wells. The gas was encountered in Zone-B Limeston Kirthar Formation, commonly known as Habib Rahi Limestone and Goru B Reservoir which deep reservoir. From Petrophysical interpretations, the volume of shale varies from 30 to 80 while calculated porosity in these reservoir rocks, varies between 10-20%. As the wells were dr therefore most of reservoir portion shows 70-100% of saturation of water and 0-30% saturation of hydrocarbons. Twenty one core samples of cretaccous age from the Mari X-1, X & X-3 were also collected for Petrographical study reservoir rocks. On the basis of the Petrographic study, these core samples fall within five different categories of lithologiy i. sandstone, glauconitic sandstone, glauco-arenites, limestone and claystone. The Petrographic study of core sample also indicates effective porosity of about 10-20%.