Drilling Fluids Technology

A thesis submitted to the Faculty of Earth and Environmental Sciences, Bahria University in the partial fulfillment for the Degree of

MASTERS OF SCIENCE IN GEOLOGY

By

SYED NIGAH HAIDER

RESEARCH SUPERVISOR

Mr. Muhammad Mehboob Alam

FACULTY OF EARTH AND ENVIRONMENTAL SCIENCES BAHRIA UNIVERSITY ISLAMABAD

Session: 2007-2008

			Con	tents	Page		
					Number		
	Ac	knowledg	ements		xi		
	Abstract						
	Me	thodology	/		xiii		
			Sec	tion l			
Α	n Intro	duction	to Petroleum	Exploration and	Drilling Fluids		
1.0	Overvie	ЭW			02		
1.1	The Mi	gration an	d Trapping of Pe	troleum	02		
	1.1.1	Sedimen	tary Rocks		02		
	1.1.2	Salt Don	ies		02		
	1.1.3	Salt Laye	ers		03		
	1.1.4	Traps			04		
1.2	Explora	ation For F	etroleum		06		
	1.2.1*	Locating	Petroleum		06		
	1.2.2	, Aerial an	d Satellite		06		
	1.2.3	Surface	Geological Explo	ration	06		
	1.2.4	Geophys	ical Exploration		07		
1.3	Drilling	for Petrol	eum		07		
	1.3.1	Drilling N	lethods		07		
		1.3.1.1	Cable Tool Dril	ling	07		
		1.3.1.2	Rotatary Drillin	g	07		
	1.3.2	Drill Bits			07		
		1.3.2.1	Roller Cone Bit	5	07		
		1.3.2.2	Diamond and P	DC Bits	08		
	1.3.3	The Drill	string		09		
		1.3.3.1	Coiled Tubing [Drilling	09		
	1.3.4	Drill bit F	Rotation		11		
		1.3.4.1	Rotary table an	d Kelly	11		
		1.3.4.2	Top Drive		11		

		1.3.4.3	Mud Motor	11
		1.3.4.4	MWD and LWD	11
		1.3.4.5	Derrick's Hoisting system	12
		1.3.4.6		
			Drawworks and Tongs	12
	105	1.3.4.7	Driller's Console	12
	1.3.5		ulation and Solid Removal	12
	1.3.6	Blowout	Preventers	14
	1.3.7	Casing a	nd Liner	14
	1.3.8	Cementa	ition	14
	1.3.9	Mud Log	ging	14
	1.3.10	Coring a	nd Core Analysis	15
	1.3.11	Drill sterr	and Formation Interval Testing	15
	1.3.12	Wireline	Logging	15
	1.3.13	Direction	al Drilling	15
	1.3.14	Well Con	npletion	16
		1.3.14.1	Open hole Completion	16
		1.3.14.2	Perforated Casing or Liner	16
		1.3.14.3	Perforated or Slotted Liner	16
		1.3.14.4	Gravel Packing	16
		1.3.14.5	Production Tubing	18
	1.3.15	Productio	on Equipment	18
	1.3.16	Pumping	Methods	18
1.4	Major C	Objectives	for Drilling Fluids Consideration	18
	1.4.1	Minimizir	ng Operation Cost	18
	1.4.2	Type of I	Mud to be Selected	19
	1.4.3	Integratio	on of Mud and Casing Program	19
1.5	Drilling	Fluids Eco	onomics	20
	1.5.1	Factors E	Effecting Product Choice	20
	1.5.2	Estimatic	on of Mud Cost for Mud Program	20

Section II

Function and	l their	Relations	to	Properties	of	Drilling	FI	uids
--------------	---------	-----------	----	------------	----	----------	----	------

2.0	Overview				
2.1	Drilling Fluids Function				
	2.1.1	Remove	Remove Cutting from Wells		
		2.1.1.1	Viscosity	22	
		2.1.1.2	Velocity	23	
		2.1.1.3	Density	23	
		2.1.1.4	Drillstring Rotation	23	
		2.1.1.5	Hole Cleaning	23	
		2.1.1.6	Cleaning Beneath the bit	23	
	2.1.2	Controllir	ng Formation Pressure	23	
	2.1.3	Suspend	and Release Cuttings	24	
	2.1.4	Seal Permeable Formations			
	2.1.5	Maintain Wellbore Stability			
	2.1.6	Minimize	Formation Damage	26	
	2.1.7	Cool, Lui	pricate and Support the bit	27	
	2.1.8	Transmit	s hydraulic Energy to Tools and Bit	29	
	2.1.9	Ensure A	dequate Formation Evaluation	29	
	2.1.10	Control C	Corrosion	29	
	2.1.11	Facilitate	Cementation and Completion	33	
	2.1.12	Minimize	Impact on Environment	33	
2.2	Mud Se	election		33	
2.3	Mud Pi	roperties ^v	VS Functions	33	
2.4	Relatio	nship of N	Aud Properties to Functions	34	
	2.4.1	Density		34	
	2.4.2	Flow Pre	operties	35	
	2.4.3	Plastic \	/iscosity	37	
	2.4.4	Yield Po	bint	39	
	2.4.5	Gel Stre	ength	40	

2.4.6	Solid ana	lysis	40
2.4.7	Retort		41
2.4.8	Filtration		41
	2.4.8.1	Methylene Blue Test	42
	2.4.8.2	Dynamic Filtration	42
	2.4.8.3	Static Filtration	42
2.4.9	Water Ch	emistry	44
	2.4.9.1	pH and Alkalinity	44
	2.4.9.2	Ca and Mg Determines	45
	2.4.9.3	Chloride determination	46
2.4.10	Pilot Test	ing	46

Section III

Types of Drilling Fluids

3.1	Water Base Drilling Fluids			
3.2	Water	Water Base Drilling Fluids Classification		
3.3	Unwei	Unweighted Clay water Systems		
3.4	Oil Bas	se Systems	52	
	3.4.1	Conventional Versa Systems	52	
	3.4.2	Relaxed Filtrate Versa systems	53	
3.5	Oil Bas	se Products	53	
	3.5.1	Diesel Oil	53	
	3.5.2	Mineral Oils	53	
3.6	Oil Bas	se Additives	54	
3.7	Proper	rties of Oil Base Mud	54	
	3.7.1	Emulsion Stability	55	
	3.7.2	Water Content	55	
	3.7.3	Water Wet Solids	55	
	3.7.4	Emulsification	55	
	3.7.5	Temperature	55	
	3.7.6	Types of Solids	55	

	3.7.7	Salinity and Control Activity		55		
	3.7.8	Displacements		56		
	3.7.9	Density		56		
	3.7.10	Spacers		56		
3.8	Pipe Po	sition and Movement		56		
	3.8.1	Pump Rate		56		
	3.8.2	Contamination		56		
	3.8.3	Conditioning and Stabilizatio	n	57		
3.9	Comple	eted Displacement Indicator		57		
3.10	Lost Ci	rculation in Oil Muds		57		
3.11	Packer	Muds		57		
3.12	Non Aq	ueous Emulsions		58		
	3.12.1	Emulsion Fundamentals		59		
3.13	Oil Bas	e System Additives		59		
	3.13.1	Emulsifiers		59		
	3.13.2	Soaps		60		
	3.13.3	Wetting Agents		60		
	3.13.4	Viscosifiers		60		
	3.13.5	Filtration control additives		60		
3.14	System	s Formulations		60		
	3.14.1	All Oil Systems		60		
	3.14.2	Invert emulsion		60		
3.15	Gas Sc	olubility		61		
3.16	Water \	Wet Solids		62		
3.17	Hydrog	en Sulfide		62		
3.18	Lost Ci	rculation in Oil Muds		63		
3.19	Solid C	Solid Control in Oil Muds 63				

Section IV

C	ase Stu	dies an	d Major Problems Encountered in O	peration
4.0	Case S	tudies		65
4.1	Well X			66
	4.1.1	Mud Pro	gram	66
		4.1.1.1	Phase I Description	66
		4.1.1.2	Phase II Description	66
		4.1.1.3	Phase III Description	67
		4.1.1.4	Phase Iv Description	67
	4.1.2	Problem	s Encountered during Operation	69
		4.1.2.1	Phase I	69
		4.1.2.2	Phase II	69
		4.1.2.3	Phase III	69
		4.1.2.4	Phase Iv	69
		4.1.2.5	Phase V	69
	4.1.3	Precaut	ion Instructions	71
4.2	Well Y			74
	4.2.1	Phase l	Description	74
		4.2.1.1	Drilling Fluids Discussion	74
		4.2.1.2	Solids Control Equipment	74
		4.2.1.3	Observations	74
	4.2.2	Phase l	I Description	74
		4.2.2.1	Drilling Fluids Discussion	75
		4.2.2.2	Solids Control Equipment	76
		4.2.2.3	Observations	76
	4.2.3	Phase	III Description	76
		4.2.3.1	Drilling Events	76
		4.2.3.2	Drilling Fluid Operation	78
		4.2.3.3	Solid Control Equipment	78
	4.2.4	Precau	tions	79

4.3	Major Problems in Drilling Operation and Role of Drilling Fluids					
	4.3.1	Shale ai	nd Wellbore Stability	82		
		4.3.1.1	Shale Deposition in Sedimentary Rocks	83		
		4.3.1.2	Mechanical Stress Failure	86		
		4.3.1.3	Tensile Failure Fracturing	86		
		4.3.1.4	Stressed Shales	86		
		4.3.1.5	Pressured Shales	87		
		4.3.1.6	Plastic Flow	89		
	4.3.2	Solid Co	ontrol	95		
		4.3.2.1	Fundamentals	96		
		4.3.2.2	Steps for Operating Shale Shakers	108		
		4.3.2.3	Steps for Operating Centrifuge	109		
	4.3.3	Stuck Pi	k Pipe			
		4.3.3.1	Mechanically stuck Pipe	110		
		4.3.3.2	Differentially Stuck Pipe	110		
	4.3.4	Mechan	ical Sticking	111		
		4.3.4.1	Hole pack off and Bridges	111		
		4.3.4.2	Shale Instability	113		
		4.3.4.3	Wellbore Geometry	122		
		4.3.4.4	Differentiate Stuck pipe	129		
		4,3.4.5	Preventive Measures	131		
		4.3.4.6	Common stuck Pipe Scenarios	132		
		4.3.4.7	Method for freeing stuck pipe	133		
	4.3.5	Spotting	n Techniques	133		
		4.3.5.1	Pipe LAX spotting fluids	133		
		4.3.5.2	Washing over pipe and Side tracking	133		
		4.3.5.3	Pipe stretch estimate of stuck zone	133		
	4.3.6	Lost Cir	culation	134		
		4.3.6.1	Causes of lost circulation	136		
		4.3.6.2	Occurrence of Lost Circulation	137		

Section V

Health,	Safety	and	Enviro	onment
---------	--------	-----	--------	--------

5.0	Introdu	iction	143
5.1	Manag	ing Pollution	143
	5.1.1	Pollution Prevention	143
	5.1.2	Recycling/Reuse of Material	144
	5.1.3	Minimize the Quantity of Waste	144
5.2	Treatm	nent of Contaminated Material	144
	5.2.1	Air Pollution	144
	5.2.2	Water Pollution and Solid waste	144
	5.2.3	Salt	144
	5.2.4	Heavy Metals	145
5.3	Waste	Management options for drilling fluids and cuttings	145
	5.3.1	Offshore Options	145
	5.3.2	Onshore Options	145
	5.3.3	Associated Waste	147
5.4	Enviro	nmental Health and Safety Regulations	147
	5.4.1	Environmental Regulations	147
	5.4.2	Offshore Regulations	147
	5.4.3	Onshore Regulations	148
	5.4.4	Individual Safety Measures	148
Refe	rences		150

Abstract

The drilling fluids are a set of chemicals which is responsible to ensure smooth drilling and to give information about subsurface lithology in form of cuttings. Parameters for drilling fluids should be kept in range and monitored strictly to ensure smooth operation. Recommending a drilling fluid system should be based on the ability of the fluids to achieve the essential functions and to minimize anticipated well problems. Although the functions discussed may provide guidelines for mud selection, they should not be the sole basis for selecting a drilling fluid for a well. The selection process must be founded on a wide experience base. Drilling fluids cost (economics is considered while choosing the drilling fluid system, but besides economics the quality of the service should also be considered as that will be much more effective in long run operations also from economic point of view. Solid control equipments all great influence to the mud. Health, Safety and Environment should be the first priority, regulations should be follow.