STRUCTURAL EVALUATION OF MARGALLA HILLS IN THE VICINITY OF TALHAAR VILLAGE, ISLAMABAD, PAKISTAN.

By

M. SALMAN SALAMAT WAQAR AHMAD YOUSAF BIN ZAHID

Department of Earth and Environmental Sciences Bahria University, Islamabad

2013

Dedicated to our Parents. May they live long Aameeen.....!

ACKNOWLEDGEMENTS

Uncountable praise for AlMIGHTY ALLAH and uncountable Darood upon MUHAMMAD (S.A.W.W) for giving us strength, courage and keeping us safe throughout this research work.

We are thankful to our supervisor Mr. Hummad Ghani (Lecturer Bahria University) for helping s throughout this research work with his knowledge and courage. Without the guidance we were not able to complete this research work in an excellent way. We are grateful to you sir.

We are also thankful to Mr. Gohar Rahman (Lecturer Peshawar University) Mr. Mustafa Afridi (Lecturer Bahria University) for their moral support without which this would have been very difficult to complete this research work. And we want to say thanks to Mr. Ehtisham for his technical help.

Our parents also deserve bundle of thanks for supporting us and praying for our safety during the tough time of this research work.

And last but not least, we want to say thanks to the natives of Villages in vicinity of Margalla Hills for their cooperation.

ABSTRACT

This research work is based on the structural evaluation and problems associated with the geological mapping of the Margalla Hills. Area in the north of Islamabad is selected for this research. In this area repetition and miss matches of the stratigraphic formations indicate the presence of folds and faults at a map able scale. Main boundary thrust, Talhaar thrust, Talhaar syncline, Pir Sohawa anticline and Sanghara anticline are the major structures present in this area. MBT is frontal thrust marked in the field by faulted contact of Jurassic Samanasuk Formation and Murree Formation. Outcrop folds are observed in the field involving shale of lower member of Margalla and Patala Formation. These outcrop scale folds are formed as secondary folds in major folded structures due to competency contrast and strain accommodation. The chemical weathering of limestone has obscured the primary bedding foliation so structural mapping in this area through satellite imagery could yield wrong orientation research. The fractures are very well developed which often reveals to be the bedding. So, proper care must be taken for advanced geological mapping in this area. Two thrust sheets, Talhaar thrust sheet and Margalla thrust sheet are present in the study area. Theses thrust sheets are bounded by Talhaar thrust and Main boundary thrust respectively. The synclines and anticlines are formed within thrust sheets to accommodate the strain resulted by southward progression of Himalayan induced deformation. The mollasse sediments are restricted to the south of MBT and no evidence of these depositions is recorded in north of it, which suggests that area didn't act as depocentre for the accumulation of mollasse in Miocene and younger time.

Contents

Page numbers.

CHAPTER 1

INTRODUCTION

1.1	Introduction to the area	1
1.2	Location and accessibly	1
1.3	Previous Work	2
1.4	Aims and objectives	3
1.5	Methodology	3

CHAPTER 2

REGIONAL TECTONICS

2.1	Tector	tonic History and Regional Tectonics of the study area	
2.2	Tector	nic Terrains in Pakistan	6
	2.2.1	Main Karakoram Thrust	6
	2.2.2	Kohistan Island Arc	6
	2.2.3	Main Mantle Thrust	8
	2.2.4	Northern Deformed Fold and Thrust Belt	9
	2.2.5	Main Boundary Thrust	9
	2.2.6	Southern Deformed Fold and Thrust Belt	9
	2.2.7	Salt Range Thrust and Trans Indus Ranges	10
	2.2.8	Punjab Fore deep	10

CHAPTER 3

STRATIGRAPHY OF AREA

3.1	Intro	duction	11
3.2	Jurassic		11
	3.2.1	Samanasuk formation	11

3.3	Creta	ceous	15
	3.3.1	Kawagarh Formation	15
3.4	Paleo	cene	16
	3.4.1	Lockhart Formation	16
	3.4.2	Patala Formation	18
3.5 Eocer		le	18
	3.5.1	Margalla Hill limestone	18
		3.5.1.1 The lower member	19
		3.5.1.2 The Middle Member	20
		3.5.1.3 Upper Member	20
	3.5.2	Chorgali Formation	21
	3.5.3	Kuldana Formation	22
3.6 N	liocene		23
	3.6.1	Murree Formation	23

CHAPTER 4

STRUCTURAL GEOLOGY OF THE AREA

Introd	uction	25
Struct	ures present in the area	26
4.2.1	Folds	26
	4.2.1.1 Talhaar Anticline	26
	4.2.1.2 Talhaar syncline	26
	4.2.1.3 Sangara Anticline	27
	4.2.1.4 Sangara Syncline	27
	4.2.1.5 PirSohawa Anticline	28
	4.2.1.6 Malpur Anticline	28
	Structu	 4.2.1.1 Talhaar Anticline 4.2.1.2 Talhaar syncline 4.2.1.3 Sangara Anticline 4.2.1.4 Sangara Syncline 4.2.1.5 PirSohawa Anticline

4.2.4.2.4.2.3 Geo4.2.	Faults	28
4.2.3 Conclusions	4.2.2.1 Talhaar Thrust	28
	4.2.2.2 Main Boundary Thrust	29
	4.2.2.3 Malpur Thrust	29
4.2.3	Geological cross sections	30
	4.2.3.1 Cross section along line AB	31
	4.2.3.2 Cross section along line CD	31
	4.2.3.3 Cross section along line EF	32
Conclusions		34
References		35

List of Figures

Fig. 1.1Accessibility map of the area. The square is showing the study area2
Fig 2.1 Supercontinent Pangaea began to break in Triassic, resulted in Gondwanaland and Laurasia
Fig 2.2 Northward movement of Indian plate and collision with Eurasian Plate
resulted in formation of Indian-Ocean and Himalayas
Fig 2.3 Map showing location and major tectonic trends of Indo-Pakistan sub-
continent
Fig 2.4 Tectonic Terrains in Pakistan
Fig.3.1 Medium to thick bedded, yellowish grey, sandy limestone of Samanasuk
formation. Fragment of Brachiopod is visible (in redsquare)13
Fig.3.2 Temphestite bed of Samanasuk Formation14
Fig 3.3 Ooides in Limestone of Samanasauk formation
Fig 3.4 Limestone of Kawagarh formation
Fig. 3.5 Fossil fragments in Limestone of Kawagarh formation16
Fig.3.6 Beds of Lockhart limestone, comprising of grey to dark grey thick bedded to
massive limestone
Fig 3.7 Lockhart limestone. Folding in beds of grey colored, thick bedded
limestone17
Fig 3.8 Patala formation having intrelations of shale and limestone
Fig.3.9 Grey colored, nodular, medium to thick bedded limestone of Margalla
Formation19
Fig 3.10 Lower and middle member of Margalla Hill limestone, folding in lower Member is visible.
Fig 3.11 Upper member of Margalla Hill limestone, the massive limestone
unit21

Fig 3.12 Contact between Chorgali and Margalla Hill formation	2
Fig.3.13 Red mudstone of Kuldana Formation2	3
Fig 3.14 Sandstone of Murree Formation	1
Fig. 4.1 Geological map of the study area (modified after Khan et. a 2000)	
Fig 4.2 Talhaar anticline.Samanasuk formation is in core while Kawagarh an Lockhart limestone is at limbs	
Fig 4.3 Talhaar Thrust. Faulted contact of Samanauk and Chorgal Formation	
Fig. 4.4 Main Boundary Thrust. Samanasuk formation of Jurassic age is in faulte contactwith younger Miocene and Eocene age rocks	
Fig 4.5 Cross section AB	1
Fig 4.6 Cross section BC	
Fig. 4.7 Cross section CD	3

List of table(s)

Table 3.1 Stratigraphic table	f the study area	12
-------------------------------	------------------	----