Petrophysical analysis of Qadirpur # 3 well, central Indus basin Pakistan

By

Asim Meraj

Osama Rashid

Faizan ul Haq

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES BAHRIA UNIVERSITY, ISLAMABAD

2013

PETROPHYSICAL ANALYSIS OF QADIRPUR # 3 WELL, CENTRAL INDUS BASIN PAKISTAN

A thesis submitted to Bahria University Islamabad, in partial fulfillment of the requirement for the degree of BS in Geology

> ASIM MERAJ OSAMA RASHID FAIZAN UL HAQ

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES BAHRIA UNIVERSITY, ISLAMABAD

2013

IN THE NAME OF ALMIGHTY ALLAH THE MOST BENEVOLENT THE MOST MERCIFUL

DEDICATION

The treatise has been dedicated to our parents, who have always supported us through thick and thin in every sphere of life and given us the moral and financial support along with their great practical advices.

ABSTRACT

The main objective of the study was to carry out petrophysical analysis to evaluate the hydrocarbon potential of Qadirpur # 3 well. The purpose has been achieved by utilizing complete suite of wire line logs and the available well data. All the reservoir zones were evaluated for the hydrocarbon potential in detail using set of equations and different formation evaluation charts made by Schlumberger. The methodology adopted included measurement of shale volume by employing gamma ray log, estimation of porosity using density and neutron log, estimation of effective porosity, calculation of resistivity of water utilizing spontaneous potential log, evaluation of saturation of water and hydrocarbon saturation using Archie equation. The Average Shale Volume calculated in Sui Main Limestone Zone 3, Sui Upper Limestone Zone 2 and Habib Rahi Limestone Zone 1 are 20.44%, 14.33% and 15.72% respectively. The Average Porosity determined by NPHI (CNL) and RHOB (LLD) in Sui Main Limestone Zone 2, Sui Main Limestone Zone 3 and Habib Rahi Limestone Zone 1 are 23.55%, 20.27% and 19.93% respectively. The Average Effective Porosity determined in Sui Main Limestone Zone 3, Habib Rahi Limestone Zone 1 and Sui Upper Limestone Zone 2 are 16.63%, 16.32% and 9.21% respectively. The Average Water Saturation determined in Sui Upper Limestone Zone 2, Habib Rahi Limestone Zone 1 and Sui Main Limestone Zone 3 are 75.67%, 11.97% and 23.71% respectively. The Average Hydrocarbon Saturation determined in Habib Rahi Limestone Zone 1, Sui Main Limestone Zone 3 and Sui Upper Limestone Zone 2 are 88.02%, 64.52% and 24.23% respectively. The Density and Neutron cross plot chart reveal the reservoir lithology of Qadirpur # 3 well as Sui Main Limestone and the Habib Rahi Limestone. On the basis of above mentioned results the Habib Rahi Limestone Zone 1 and Sui Main Limestone Zone 3 are the productive reservoir zones of natural gas.

ACKNOWLEDGEMENTS

We are very grateful to our respected Supervisor Prof. Dr. Tahseenullah Khan Bangash, Department of Earth and Environmental Sciences (E& ES), Bahria University, Islamabad for his guidance and supervision that made the completion of the thesis within time. We are also thankful to our Head of Department Dr. Muhammad Zafar and course Co-ordinator Mr. Saqib Mehmood, Assistant Professor (E&ES) for their guidance throughout the thesis work. Mr. Fahad Mehmood, Lecturer, (E&ES) is thanked for helping us in the interpretation of the data. Mr. Niaz Hussain is also thanked for his endless technical cooperation during the thesis work. Directorate General of Petroleum Concession (DG PC) is thanked for providing wire line data and Landmark Resources (LMKR) for the well data.

We are extremely thankful to our parents and all our family members for their consistent encouragement, belief in our abilities, prayers, and their endless love and affection which kept us motivated.

ABBREVIATIONS

- Rxo Resistivity of Flushed Zone
- Rmc Resistivity of Mud Cake,
- Dh Borehole Size
- Rm Drilling Mud
- Rmf Mud Filtrate
- Rmc Mud Cake
- CNL Compensated Neutron Log
- PEF Photo-Electric Factor
- LLS Laterolog Shallow
- LLD Laterolog Deep
- MSFL Microsphericaly Focused Log
- SP Spontaneous Potential
- Ec Electrochemical Potential
- (Em) Shale or Membrane Potential
- (Elj) Liquid Junction Potential
- (Ek) Electro Kinetic Potential
- B.H.T Borehole Temperature
- Φn-d: Average Porosity
- Φn Neutron Porosity
- Φden Density Porosity
- Ma Million Years
- Fm Formation
- V_{sh} volume of shale
- GR_{log} Gamma ray reading of formation

GR_{min}	Gamma ray minimum
GR _{max}	Gamma ray maximum (shale)
$ ho_{ma}$	matrix density
ρ_b	formation bulk density
$ ho_{f}$	fluid density
F	formation factor (a/\emptyset_A^m)
А	turtuosity factor
М	constant, cementation exponent
Essp	Static Spontaneous Potential
Н	Mud Cake Thickness
Sh	Saturation of Hydrocarbons
Sw	Saturation of Water
Rmfeq	Resistivity of Mud Filtrate Equivalent

- D and PL Development and Production Lease
- OGDCL Oil and Gas Development Company Limited
- PPL Pakistan Petroleum Limited

CONTENTS

PAGE

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
ABBREVIATIONS	iii
CONTENTS	V
FIGURES	vii
TABLES	viii
GRAPHS	ix

CHAPTER 1

INTRODUCTION

1.1	General statement	1
1.2	Topography and Accessibility	1
1.3	Exploration history of Qadirpur gasfield	1
1.4	Data Used	2
1.5	Objective	4
1.6	Methodology	4
	CHAPTER 2	
	PETROLEUM SYSTEM OF THE QADIR PUR GASFIELD # 3	
2.1	Sedimentary basin	5
2.2	Structure geology	6
2.3	Regional geology of the area	7
2.4	Hydrocarbon System Of Qadir pur gas field	9
2.4.1	Source Rocks	9
2.4.2	Caps Rocks	9
2.4.3	Reservoir Rocks	9
2.4.4	Traps	10

CHAPTER 3

STRATIGRPY OF QADIR PUR # 3 WELL

3.1	Introduction	11
3.2	Alluviam	12
3.3	Swalik Group	12
3.4	Nari Formation	12
3.5	Kithar Formation	12
3.5.1	Drarzinda Formation	13
3.5.2	Pirkoh Member	13
3.5.3	Sirki Member	13
3.5.4	Habib Rahi Member	13
3.5	Ghazij Formation	14
3.6	Sui Limestone Member	14
3.7	Sui Shale	14
3.8	Sui Main Limestone	15

CHAPTER 4

PETROPHYSICAL ANALYSIS

4.1	Petrophysics	16
4.2	Wireline Log Interpretation Workflow	16
4.3	Volume of Shale (Vsh)	16
4.4	Porosity by NPHI (CNL) AND RHOB (LLD)	21
4.5	Effective Porosity	25
4.6	Determination of Rw	29
4.7	Water Saturation	33
4.8	Hydrocarbon Saturation	37
SUMM	SUMMARY AND CONCLUSIONS	
APPENDIX-I		42
APPENDIX- 2		44
REFERENCES		47
Internet link		49

FIGURES

Figure 1.1.	Map Showing Area of Qadirpur Gasfield. (Pakistan Petroleum	3
	Limited, 2010)	
Figure 2.1.	Map showing the Discoveries of Oil and Gas fields in central Indus	5
	basin. (www.googleimmages.com)	
Figure 2.2.	Tectonic Map showing Major structural features of Mari- KandhKot	6
	High	
Figure 2.3.	Stratigraphy and Hydrcarbon System of Middle Indus Basin. (Qadri,	7
	1995)	
Figure 2.4	The Tectonic Elements and Laki Limestone (SML equivalent)	
	Limits. (Siddiqui, 2004)	8
Figure 3.1.	Stratigraphic Column of Qadirpur # 3 Well	11
Figure 4.1.	SP-1 chart showing estimation of Rweq from Essp and formation	
	temperature	31
Figure 4.2.	SP-2 chart showing calculation of Rw from Rweq	32

TABLES

Table 4.1.	Average shale volume (%) for Zone 1, 2 and 3	17
Table 4.2.	Average porosity (%) for Zone 1, 2 and 3	21
Table 4.3.	Effective porosity (%) for Zone 1, 2 and 3	25
Table 4.4	Water saturation (%) for Zone 1, 2 and 3	33
Table 4.5	Water Hydrocarbon saturation (%) for Zone 1, 2 and 3	37
Table 1	Petrophysical Analysis result of Zone 1 (925m-950m)	45
Table 2	Petrophysical result of Zone 2 (1265m-1276m)	46
Table 3	Petrophysical Analysis result of Zone 3 (1365m-1400m)	47

GRAPHS

Graph 4.1.	Depth vs. volume of shale Zone 1 Habib Rahi limestone Formation	18
Graph 4.2.	Depth vs. volume of shale Zone 2 Sui Upper limestone Formation	19
Graph 4.3.	Depth vs. volume of shale Zone 3 Sui main limestone Formation	20
Graph 4.4.	Depth vs. average porosity Zone 1 Lower Goru Formation	22
Graph 4.5.	Depth vs. average porosity Zone 2 Sui Upper Limestone Formation	23
Graph 4.6.	Depth vs. average porosity Zone 3 Sui Main Limestone Formation	24
Graph 4.7.	Depth vs. effective porosity Zone 1 Habib Rahi Formation	26
Graph 4.8.	Depth vs. effective porosity Zone 2 Sui Upper Limestone Formation	27
Graph 4.9.	Depth vs. effective porosity Zone 3 Sui Main Limestone Formation	28
Graph 4.10.	Depth vs. Water saturation Zone 1 Habib Rahi Limestone Formation	34
Graph 4.11.	Depth vs. Water saturation Zone 2 Sui Upper Limestone Formation	35
Graph 4.12.	Depth vs. Water saturation Zone 3 Sui main Limestone Formation	36
Graph 4.13.	Depth vs. Hydrocarbon saturation Zone 1 Habib Rahi Limestone	38
Graph 4.14.	Formation Depth vs. Hydrocarbon saturation Zone 2 Sui Upper Limestone Formation	39
Graph 4.15.	Depth vs. Hydrocarbon saturation Zone 3 Sui Main Limestone Formation	40