Petrophysical analysis of wells Zaur-01 and Zaur-03, southern Indus basin, Pakistan

By

Inamullah Muhammad Talal Zakir Khan

Department of Earth and Environmental Sciences Bahria University, Islamabad

2014

ETROPHYSICAL ANALYSIS OF WELLS ZAUR-01 AND ZAUR-03, SOUTHERN INDUS BASIN, PAKISTAN

A thesis submitted to Bahria University, Islamabad in partial fulfillment of the requirement for the degree of B.S in Geology

INAMULLAH MUHAMMAD TALAL ZAKIR KHAN

Department of Earth and Environmental Sciences Bahria University, Islamabad

2014

ACKONWLEDGMENT

We wish to acknowledge the support of the ALMIGHTY ALLAH Who enables us to perform the research on the desired topic.

We are graceful to the Head Of Department Dr.Zafar who arranged a special course in form of thesis which is full of knowledge and practical work related to the industry.

We are extremely thankful to Mr. Saqib Mehmood for his critical review of this report whose constructive comments not only helped us in completing the report but also helped in writing the research report.

Special thanks are extended to Mr. Ghulam Nabi Afridi who helped us in many aspects of the research and provided various kinds of books, articles and other data on research area.

ABSTRACT

The main purpose of this work is to evaluate the hydrocarbon potential of wells Zaur-01 and Zaur-03. Geographically Zaur-01 and Zaur-03 wells are located between latitude 24° 25′ 60″ N and from longitude 68° 69′ 45″ E, Badin block, Southern Indus basin. Southern Indus basin is located just south of Sukkur Rift which divides Central and Southern Indus. Tectonically Southern Indus basin is bounded by the Indian shield to the east and the marginal zone of Indian plate to the west. Its southward extension is confined by offshore Murray Ridge.Rocks from Triassic to Pleistocene age are present in this area. To evaluate the potential of the reservoirs physical properties were calculated and analyzed using different logs like Sp-log, Gamma ray log, Neutron log, Density log and Resistivity logs. One zone of interest was marked in Zaur-01 from 5960 to 6060 feet. Three zones were marked in Zaur-03, ranges from 6270 to 6300 feet, 6360 to 6410 feet and 6640 to 6665 feet, respectively. Out of three zones in Zaur-03, zone 2 is the best productive zone because of its more thickness, average porosity and hydrocarbon potential.

CONTENTS

	Page
Abstract	i
Acknowledgment	ii
Figures	vi
Tables	vii
Graphs	viii

CHAPTER 1

INTRODUCTION

	-	 	
Location			1
Objectives of research			1
Data obtained			2

CHAPTER 2

GEOLOGY, TECTONICS, STRATIGRAPHY AND PETROLEUM PLAY Tectonic framework

Tectonic framework	3
Thar platform	4
Karachi trough	5
Kirthar foldbelt	5
Offshore indus	5
Kirthar fordeep	5
Structural setting	5
Rifting	6
Shear modification reactivation	6
Late tertiary inversion	7
Stratigraphy of southern Indus basin	7
Generalised stratigraphy	7
Triassic	8
Jurassic	8
Sherinab formation	8
Chiltan limestone	8
Mazar Drik formation	9
Cretaceous	9
Paleocene	9
Eocene	9
Oligocene	10
Miocene	10
Pliocene-Miocene	10
Chinji formation	10
Nagri formation	10
Dhok Pathan formation	10
Borehole stratigraphy	11

2.4	Petroleum system	13
2.4.1	Source rock	14
2.4.2	Reservoir rock	15
2.4.3	Seal rock	15
2.4.4	Trap	15
2.4.5	Migration route	15

CHAPTER 3

INTRODUCTION TO WIRE LINE LOGGING

3.1	Open hole logs	16
3.2	Cased hole logs	16
3.3	Geological environment	17
3.4	The borehole environment	19
3.4.1	Borehole diameter	19
3.4.2	Drilling mud R _m	19
3.4.3	Invaded zone	19
3.4.4	Flushed zone R _{xo}	19
3.5	Log presentation	20
3.5.1	Grid scale	20
3.6	Classification of wire line logging tools	20
3.6.1	Lithology logs	20
3.6.2	Porosity logs	21
3.6.3	Resistivity logs	21
3.7	SP logs	21
3.7.1	Presentation and purpose	22
3.7.2	Electrochemical component of SP log	22
3.7.3	Electrokinetic component of SP log	23
3.8	The GR log	24
3.8.1	Equipment	24
3.8.1.1	Gamma ray detectors	24
3.8.1.2	Gas-Discharge counters	25
3.8.1.3	Scintillation detectors	26
3.8.2	Uses	27
3.9	Sonic log	27
3.9.1	Principle	28
3.9.2	Equipment	28
3.9.3	Log presentation	30
3.9.4	Sonic porosity	30
3.10	Formation density log	30
3.10.1	Principle	30
3.10.2	Equipment	31
3.10.3	Porosity determination	31
3.11	Neutron log	32
3.11.1	Principle	32
3.11.2	Equipment	33
3.11.3	Presentation	34

3.12	Resistivity logs	35
3.12.1	Normal logs	36
3.12.2	Lateral logs	36
3.12.3	Induction resistivity logs	36
3.12.3.1	Induction	36
3.12.4	Focused resistivity logs	37
3.12.4.1	Micro resistivity logs	38
3.12.4.2	Contact/mini or microlog	38
3.12.4.3	Proximity log and microlaterolog	39

CHAPTER 4

PETROPHYSICAL INTERPRETATION

4.1	Volume of shale	40
4.2	Average porosity	43
4.3	Effective porosity	45
4.4	Resistivity of water R _w	48
4.5	Water saturation	50
4.6	Hydrocarbon saturation	52
CONCI	LUSION S	
REFER	ENCES	

APPENDICES

FIGURES

Figure 1.1.	Location map of badin area (BHP,2001)	1
Figure 2.1.	Tectonic map of Pakistan showing tectonic features and divisions	4
	of Indus Basin (Qadri, 1995).	
Figure 2.2.	Tectonic map of southern Indus Basin (Raza et al., 1990)	4
Figure 2.3.	Borehole stratigraphy of Zaur-01 and Zaur-03	13
Figure 3.1.	Borehole environment (Basic well log analysis for geologists by	18
-	George Asquith).	

GRAPHS

Graph 4.1.	Graph of volume of shale for Zaur-01 versus depth.	41		
Graph 4.2.	Graph of volume of shale for Zone 1, Zaur-03 versus depth.	42		
Graph 4.3.	Graph of volume of shale for Zone 2, Zaur-03 versus depth.	42		
Graph 4.4.	Graph of volume of shale for Zone 1, Zaur-03 versus depth.	42		
Graph 4.5.	Graph of average porosity for Zaur-03 versus depth.	43		
Graph 4.6.	Graph of average porosity for Zone 1, Zaur-03 versus depth.	44		
Graph 4.7.	Graph of average porosity for Zone2, Zaur-03 versus depth.	44		
Graph 4.8.	Graph of average porosity for Zone 2, Zaur-03 versus depth.	45		
Graph 4.9.	Graph of average porosity for Zaur-01 versus depth.	46		
Graph 4.10.	Graph of average porosity for Zone 1, Zaur-03 versus depth.	46		
Graph 4.11.	Graph of average porosity for Zone 2, Zaur-03 versus depth.	47		
Graph 4.12.	Graph of average porosity for Zone3, Zaur-03 versus depth.	47		
Graph 4.13.	Graph of water saturation for Zaur-01 versus depth.	50		
Graph 4.14.	Graph of water saturation for Zone 1, Zaur-03 versus depth.	51		
Graph 4.15.	Graph of water saturation for Zone 2, Zaur-03 versus depth.	51		
Graph 4.16.	Graph of water saturation for Zone 3, Zaur-03 versus depth.	52		
Graph 4.17	Graph of Hydrocarbon saturation for Zaur-03 versus depth.	53		
Graph 4.18.	Graph of Hydrocarbon saturation for Zone 1, Zaur-03 versus	53		
	depth.			
Graph 4.19.	Graph of Hydrocarbon saturation for Zone 2, Zaur-03 versus	54		
	depth.			
Graph 4.20.	Graph of Hydrocarbon saturation for Zone 3, Zaur-03 versus	54		
	depth.			