Assessment of water quality of stream passing through Bahria University Islamabad for non potable usage

A dissertation submitted to the Bahria University Islamabad in partial fulfillment of the requirement for the Degree of MS in Environmental Sciences

Sidra Batool

Department of Earth and Environmental Sciences

Bahria University, Islamabad

2013

Dedicated to my beloved parents and my loving husband Mr. Sibt e Ali who are the source of my inspiration, support, guidance and supervision, and who share my happiness, aspirations and achievements.

ABSTRACT

The present study was conducted to assess the quality of stream water passing through Bahria University and sector E-8 of Islamabad for non potable purposes. To check the suitability of stream water, the quantitative analysis of physico-chemical parameters was conducted. Sampling was done in three different seasons of premonsoon, monsoon and post-monsoon. Three sampling sites were selected along the length of stream to check the quantity of parameters like color, electrical conductivity, turbidity, pH, alkalinity, hardness, total suspended solids, total dissolved solids, dissolved oxygen, biological oxygen demand, chemical oxygen demand, and some common ions such as Na⁺, K ⁺, SO₄ ²⁻, PO₄ ³⁻, NO₃⁻, Ca ²⁺, Mg ²⁺, Cl⁻, CO₃²⁻ and HCO₃⁻.

The results showed that all the physical and chemical parameters of stream water were within desirable permissible limits except turbidity, total suspended solids, biological oxygen demand and chemical oxygen demand. Average turbidity was calculated to be approximately 3.5 (w/v) percent more than the required limit at all sampling sites. The average amount of total suspended solid also increases from 170 to 215 ppm during monsoon season. Similarly the biological oxygen demand and chemical oxygen demand were found to be a little higher i.e. 107 and 155ppm respectively at second sampling site (Naval Complex). The increase was due to the addition of municipal waste of Naval Complex. This rise in biological oxygen demand and chemical oxygen demand was temporary and their value goes below the permissible limits as the stream flows towards third sampling site i.e. Bahria University.

The physico-chemical characteristics of stream under investigation suggested that there was no harm for using this water for non potable purposes. On the basis of the findings of the research, it is concluded to use the stream water for watering green belts. Further, this stream water can be used as a test project in order to check the suitability of water for landscaping and agricultural irrigation.

ACKNOWLEDGMENTS

Having finally completing this thesis, I would like to express my gratitude to my supervisor, Mr. Asif Javed, Assistant Professor, Bahria University for his significant suggestions, stimulating and inspiring discussions, patient guidance, sincere and endless interest during my thesis work. I should not forget to thank Mr. Khubaib Abuzar, Assistant Professor, Bahria University, for all his help and co-operation in making GIS based maps of the study area.

Special thanks are extended to Ms Hifza Rasheed, and Ms Saiqa Imran of PCRWR, who spared me their precious time and help me in sample analysis. I would also like to thank Prof. Dr. Tehseen Ullah Khan, who reviewed the thesis critically and offered fruitful suggestions. Dr Mohammad Zafar, Head of Department, Earth and Environmental Sciences is thanked for facilitating this research work.

Special mention should be made of my husband Mr. Sibt e Ali for his help in water sample collection from the investigated area. I am also grateful to my sister who helped me in writing thesis script. Last but not the least my thanks are extended to all my friends and family members who helped me and give me moral support to complete my research work.

ABBREVIATIONS

АРНА	American Public Health Association
BDL	Below Detection Limit
BOD	Biological Oxygen Demand
COD	Chemical Oxygen Demand
DO	Dissolved Oxygen
EC	Electrical Conductivity
EDTA	Ethylene Diamine Tetra Acetic acid
GDP	Gross Domestic Product
MAF	Million Acre Feet
MTB	Methyl Thymol Blue
NTU	Nephelometric Turbidity Unit
NEQS	National Environmental Quality Standards
NGVS	No Guideline Value Set
PCRWR	Pakistan Council of Research in Water Resources
PSQCA	Pakistan Standard Quality Control Authority
SpC	Specific Conductivity
SAR	Sodium Adsorption Ratio
SSP	Soluble Sodium Percentage
TDS	Total Dissolved Solids
TSS	Total Suspended Solids
µS/cm	Micro Siemens per centimeter
ppm	Parts per million
ppb	Parts per billion
mg/L	Milligram per Liter
Mm	Millimeter
μm	Micrometer
\mathbf{K}^+	Potassium ion
Na ⁺	Sodium ion
Mg ²⁺	Magnesium ion

Ca ²⁺	Calcium ion
Ba ²⁺	Barium ion
Cl ⁻	Chloride ion
NO ₃ ⁻	Nitrate ion
PO ₄ ³⁻	Phosphate ion
SO ₄ ²⁻	Sulfate ion
CO ₃ ²⁻	Carbonate ion
HCO ₃	Bicarbonate ion
CaCO ₃	Calcium carbonate
KI	Potassium iodide
NaOH	Sodium hydroxide
K_2CrO_4	Potassium chromate
AgNO ₃	Silver nitrate
HCl	Hydrogen chloride

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	ii
ABBREVIATIONS	iii
CONTENTS	v
FIGURES	viii
TABLES	х

CHAPTER 1

INTRODUCTION

1.1	Background information	1
1.2	Water pollution and global water crisis	1
1.3	Current situation of water in Pakistan	3
1.3.1	Water availability in Pakistan	6
1.4	Water quality	7
1.5	Water quality monitoring	8
1.6	Water management and sustainable water usage	8
1.7	Waste water reusing options	10
1.8	Using municipal water for irrigation	10
1.9	Study area	14
1.10	Scope for the study	15
1.11	Objectives of the study	15

CHAPTER 2

MATERIALS AND METHODS

	V	
2.4	Physico-chemical parameters to be analyzed	17
2.3	Sample collection and preservation	17
2.2	Sampling points	16
2.1	Selection of the study area	16

2.5	Instruments and methods	17
2.6	Analytical procedures for estimation of physico-chemical parameters	18
2.6.1	Color and temperature	18
2.6.2	Electrical conductivity	19
2.6.3	pH	19
2.6.4	Turbidity	20
2.6.5	Hardness	20
2.6.6	Alkalinity, bicarbonates and carbonates	20
2.6.7	Calcium	21
2.6.8	Magnesium	21
2.6.9	Chloride	22
2.6.10	Sodium and potassium	23
2.6.11	Sulphate and phosphate	23
2.6.12	Total nitrate	24
2.6.13	Total dissolved solids	24
2.6.14	Total suspended solids	25
2.6.15	Dissolved oxygen	25
2.6.16	Biological oxygen demand	26
2.6.17	Chemical oxygen demand	26

CHAPTER 3

RESULTS AND DISCUSSION

3.1	Temperature	29
3.2	pH	29
3.3	Electrical conductivity	29
3.4	Turbidity	30
3.5	Alkalinity	31
3.6	Calcium	32
3.7	Chloride	33
3.8	Hardness	34
3.9	Magnesium	35

3.10	Potassium	36
3.11	Sodium	36
3.12	Sulphate	37
3.13	Phosphate	38
3.14	Total nitrate	39
3.15	Total dissolved solids	39
3.16	Dissolved oxygen	40
3.17	Biological oxygen demand	41
3.18	Chemical oxygen demand	42
3.19	Total suspended solids	43
3.20	Determination of SAR	44
3.21	Determination of SSP	45

CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

4.1	Conclusions	47
4.2	Recommendations	48
	REFERENCES	49
	APPENDICES	58

Sr. No.	FIGURES	Page
Figure 1.1.	Map of sector E-8 of Islamabad.	14
Figure 2.1.	Map of Islamabad sector E-8 showing selected sampling points.	16
Figure 3.1.	pH of samples during pre monsoon, monsoon and post monsoon	29
	seasons.	
Figure 3.2.	Electrical conductivity of samples during pre monsoon,	30
	monsoon and post monsoon seasons.	
Figure 3.3.	Turbidity of samples during pre monsoon, monsoon and post	31
	monsoon seasons.	
Figure 3.4.	Alkalinity of samples during pre monsoon, monsoon and post	32
	monsoon seasons.	
Figure 3.5.	Calcium concentration in samples during pre monsoon, monsoon	33
	and post monsoon seasons.	
Figure 3.6.	Chloride concentration in samples during pre monsoon,	34
	monsoon and post monsoon seasons.	
Figure 3.7.	Hardness in samples during pre monsoon, monsoon and post	35
	monsoon seasons.	
Figure 3.8.	Magnesium concentration in samples during pre monsoon,	35
	monsoon and post monsoon seasons.	
Figure 3.9.	Potassium concentration in samples during pre monsoon,	36
	monsoon and post monsoon seasons.	
Figure 3.10.	Sodium concentration in samples during pre monsoon, monsoon	37
	and post monsoon seasons.	
Figure 3.11.	Sulphate concentration in samples during pre monsoon,	38
	monsoon and post monsoon seasons.	
Figure 3.12.	Phosphate concentration in samples during pre monsoon,	38
	monsoon and post monsoon seasons.	
Figure 3.13.	Nitrate concentration in samples during pre monsoon, monsoon	39
	and post monsoon seasons.	
Figure 3.14.	TDS concentration in samples during pre monsoon, monsoon	40

and post monsoon seasons.

Figure 3.15.	DO concentration in samples during pre monsoon, monsoon and	41
	post monsoon seasons.	
Figure 3.16.	BOD concentration in samples during pre monsoon, monsoon	42
	and post monsoon seasons.	
Figure 3.17.	COD concentration in samples during pre monsoon, monsoon	43
	and post monsoon seasons.	
Figure 3.18.	TSS in samples during pre monsoon, monsoon and post	44
	monsoon seasons.	

TABLES

		Page
Table 1.1.	Waste water produced by town and cities of Pakistan.	4
Table 1.2.	Overall statistics of the water availability and shortage in Pakistan.	7
Table 1.3.	General reuse applications of wastewater	11
Table 3.1.	Mean average value for different parameters at different sampling	28
	sites.	
Table 3.2.	SAR hazard of irrigation water.	45