A Framework for Extending Usability Disciplines to Software Engineering

Models' Consolidation and Hybrid Approaches in Multidisciplinary Production Optimization, API-Usability Supportive CSC-Usability Essentials via Component-Based Platform

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE IN SOFTWARE ENGINEERING

Submitted by

Muhammad Bilal Munir En#: 01-244102-023

Supervised by

Dr. Arif Mushtaq

Department of Computer & Software Engineering Bahria University, Islamabad

SESSION 2011-14

أَعُوذُ بِاللَّهِ مِنَ الشَّيْطَانِ الرَّجِيمِ

I seek refuge in Allah from Satan, the accursed one

بِسْمِ اللَّهِ الرَّحْمَٰنِ الرَّحِيمِ

In the name of Allah, the Most Gracious, the Most Merciful

Department of Computer & Software Engineering Bahria University, Islamabad

Approval Sheet

It is certified that we have read the project titled "A Framework for Extending Usability Disciplines to Software Engineering – Models' Consolidation and Hybrid Approaches in Multidisciplinary Production Optimization, API-Usability Supportive CSC-Usability Essentials via Component-Based Platform" submitted by Muhammad Bilal Munir, En#: 01-244102-023. It is our judgment that this project is of sufficient standard to warrant its acceptance by Bahria University, Islamabad for Master of Science in Software Engineering.

Committee

Head of Department:			
Sr. Shaftab Ahmed Head of Department, BUI Department of Computer & Software Engineering Bahria University, Islamabad			
Supervisor:			
Dr. Arif Mushtaq Assistant Professor, BUI Department of Computer Science Bahria University, Islamabad			
Examining Committee			
Internal Examiner:			
Eng. Dr. Shehzad Khalid Associate Professor, BUI			
Department of Computer & Software Engineering Bahria University, Islamabad			
External Examiner:			
Dr. Imran Baig			
Assistance Professor, FUUAST-ISB Department of Computer Science			
Federal Urdu University of Arts, Science & Technology			

"Allah is the light of the heavens and the earth; a likeness of His light is as a niche in which is a lamp, the lamp is in a glass, (and) the glass is as it were a brightly shining star, lit from a blessed olivetree, neither eastern nor western, the oil whereof almost gives light though fire touch it not light upon light, Allah guides to His light whom He pleases, and Allah sets forth parables for men, and Allah is Cognizant of all things."

Qur'an – **Surah An-Noor** [24:35] (Ayat An-Noor)

Dedicated To

Respected Allah Almighty

"Allah is the Only Lord and to Him belong all the Glorious Attributes." [20:8]

Praiseworthy Holy Prophets, Angels & Followers "Salam and Peace Be Upon All of Them."

Loving Parents, Family & Relatives

(Family, Relatives, Sincere Friends & Honorable Community)

Sharp Software Engineers, Computer Scientists, Quality & Usability Optimization Specialists

(Experts from Software-Engineering, Computer-Science & Related Fields having Usability Essential Quality-Integration Goals for Technology Optimization in Theoretical & Applied Sciences)

Keen Computer-Supported Collaboration Experts, Business & Process Optimization Engineers

(Computer-Mediated Communication and Collaborative-Working Environment Essential Software Optimization Experts Focusing Global Industries' Domain Specific Technology Integration)

A Framework for Extending Usability Disciplines to Software Engineering

MS (SE) – 4 Thesis – Session 2011-14 **Dissertation**Dissertation Submission

A Dissertation Submitted to the
Department of Computer and Software Engineering,
Bahria University, Islamabad
as Partial Fulfillment of the Requirements
for the Award of the Degree of
Master of Science in Software Engineering

Declaration

I hereby declare that this thesis neither as a whole nor as a part has been copied out from any source alongside the clearly cited texts. It is further declared that I have produced this dissertation entirely on basis of my personal efforts made under sincere guidance of my supervisor and teachers. In presenting this thesis in partial fulfillment of the requirements for the Master's degree at the Bahria University, Islamabad, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes, consistent with fair use as prescribed in the Government of Pakistan Copyright Law. Any other reproduction for any purposes or by any means shall not be allowed without my written permission. No portion of work presented in this dissertation has been submitted in support of any application for any other degree or qualification of this or any other university or institute of learning, apart from the publication attachment accessible via the appendix, produced by the respective thesis author.

Muhammad Bilal Munir

En#: 01-244102-023

Acknowledgement

Completing this thesis has been a much awaited milestone in my academic achievements and it hasn't been possible without the support of people involved, whom I am very thankful to for helping me at every corner when I needed them, they helped set my efforts in the right direction and pushed me with Allah's consent, their emotional support will always be treasured in my heart. I would like to thank Allah Almighty for granting me the knowledge, wisdom and courage to face all the challenges I encountered during the program and how the events unfolded in my favor, without his guidance I would never have been able to accomplish the goals and tackled the difficulties and complications. Allah via His Prophets' dedicated teachings and efforts has always been a source of divinity and light that guides me through my daily life defining my rational integrity towards matters.

I am exceedingly grateful to my family, primarily my parents who have been an inspiration throughout my life and have always been there with all the love and support they could muster through the thick and thin my life presents, and for the immeasurable support via patience, understanding, encouragement and resources they rendered throughout my academia routes and for my wellbeing. It's their prayers and faith in me that has amplified my abilities against tackling all hurdles; in addition to this I have been very fortunate for many families' prayers and optimism regarding my efforts.

I am explicitly indebted to my supervisor Dr. Arif Mushtag for his keen intellect and continuous guidance that inspired me towards the respective domains and disciplines, which later brewed up into a professional publication theme (A Framework for Extending Usability Engineering – API Usability Essentials: Extending Usability via Component-Based Platform) that got accepted in IEEE: ICOS 2012-13, Malaysia (IEEE Conference on Open Systems). I am gratified that it was presented by him personally in Malaysia, this great idea later took shape of a full-fledged usability-focused-quality integration framework following my thesis title and it shows great potential as a valuable academic contribution to future usability convergent computer and software engineering research extensions, its expert use and correct development can shape it into a flexible and reliable production optimization technology. I express a token of my appreciation to all the teachers and staff at Bahria University, Islamabad (BUI) for their professional input concerning my educational nourishment that has led to building of a promising persona and a well-define career stature. They have helped me seek and learn a great deal about making the correct use of rich online materials and resources; the learning experience has helped me sharpen my skills towards their optimal use within various computer and software supportive domains through correct use of applications, tools and technologies across various projects to get the job done rightly and reliably.

I would like to convey thankfulness to all my friends and counterparts who have in many ways maintained a dedicated learning environment with healthy extracurricular activities, my time spent with them during the MS program has been a quality educational experience that aided me in expanding professional learning horizons and exploring flexible career-building paths with positive emotional support. I consider them all a blessing-in-disguise that helped me in carving correct angles towards understanding the difference between true friends and potential adversaries.

Last but not the least I would like to thank all the people who were insensitive to me in many ways; inadvertently Allah Almighty has taught me the value of being virtuous, tolerant and flexible, this by all means enlightened my morality of being mature and rational towards qualities in peoples.

Abstract

The global software industry exhibits rapid technology growth-pattern that has created an everincreasing technological-vacuum which calls for better production-optimization strategies, CSC-Usability optimal API-Usability integration into organization's collaborative infrastructure can help establish usability-focused-quality setup that introduces ease-in-use and maturity throughout the business-infrastructure. The framework research target's critical organizational 'workflow activitystreams' via 'models consolidation formulations' and 'hybrid design-calibration techniques' that can be set against 'traceable design workloads' to extract 'Component-Oriented Metadata' beneficial to business-solutions in numerous perceivable manners; multidisciplinary-optimization and processmining strategies used for generating tangible production-intelligence can help establish a valuable knowledge-mining platform that assures a firm's readiness against industrial challenges. This research aims at producing 'A Framework for Extending Usability Disciplines to Software Engineering' that utilizes 'Models Consolidation and Hybrid Approaches in Multidisciplinary Production-Optimization focusing API-Usability Supportive CSC-Usability Essentials via Component-Based Platform'; such production beneficial component-intelligence helps reveal in-depth product and process knowledge that can be used to refine various information-design techniques immensely. Hybrid adaptive metamodeling using consolidated models' design-patterns can help develop design-maturity procedures across business-solutions, where a single model compromises others jump-in to compensate loses thus generating opportunities; component-oriented production jargon obtained can enhance multi-featured design incentives to introduce ease-in-use. A research-gap supportive methodology forms literature exploration-pattern surrounding the framework's directive-anatomy disciplines used for building usability-focused-quality mechanisms that help structure and integrate hybrid optimization formulations with critical process-streams that use usability-techniques, usability-modules, usabilityconsolidations, usability-apparatuses and usability-schemes thus enhancing framework convergent constructability and controllability. The 'Framework Design Guidelines' by 'Cwalina and Abrams' are used to support framework's research design guidance and qualitative heuristics-evaluation procedures involving mixed-methods for verification and validation. Triangulating end-user response helps explore a variety of angles regarding evaluation findings; multi-perspective feedback leads to relatively refined results' apprehension that can guide research benefactors towards its more appropriate utilization. Qualitative-analysis insights not only assert framework's credibility but elaborate its corrective use regarding 'models' consolidation approaches', 'hybrid stances' that facilitate building 'hybrid multidimensional traceability matrices' surrounding critical activity-streams. The component-intelligence via process-mining can therefore target technology establishments beyond a conventional data-warehousing environment that helps in formulation of business-solution beneficial production-intelligence, thus favoring readiness, reusability and quick design-simulation management etc. Framework's future-implications reveal research extension opportunities involving well-defined scripting-language development that focuses 'hybrid multidimensional expressions', 'smart-heuristics generative grammatical-conjunctions', 'design linguistic semantics' and 'multicontextual pragmatics'. The framework research is a step towards improving 'Hybrid-Optimization Techniques' featuring multifaceted API-Usability focused CSC-Usability via multidisciplinary hybrid meta-modeling in 'Directive-Ordinal Techniques' that enhance 'Basic-Organizational Throughput'.

CONTENTS

CONTENTS	VI	
LIST OF TABLES	XI	
LIST OF FIGURES	XII	
1 Introduction	1	
1.1 Research Background, Gaps and Related Work	2	
1.1.1 Research Gap and Identified Problems	3	
1.1.2 Optimizing API-Usability and CSC-Usability, Past and Present	5	
1.1.3 Extrapolating and Praising Gap based Needs and Requirements	7	
1.2 Problem Statement	8	
1.3 Aims and Objectives	8	
1.3.1 Expected Outcomes	9	
1.4 Research Scope	10	
1.5 Research Contributions	12	
1.6 Thesis Outline	12	
2 LITERATURE REVIEW	15	
2.1 Application Programming Interface Usability – API-Usability	15	
2.2 Essentials in API-Usability	16	
2.2.1 API-Usability and Technical Writing	17	
2.2.2 Measuring API-Usability	17	
2.2.3 API-Usability and Cognitive Dimensions Framework	18	
2.3 Computer-Supported Collaboration Usability – CSC-Usability	19	
2.4 Essentials in CSC-Usability	19	
2.4.1 Collaborative Working Environment	20	
2.4.2 Computer-Mediated Communication	20	
2.4.3 Computer-Supported Cooperative Work	20	
2.4.4 Social and Collaboration Software	21	
2.4.5 Categorization of Collaboration Software	22	
2.5 Software Architecture – Architectural-Usability	23	
2.6 Essentials in Software Architecture	24	

	· ·	Extending Usability Disciplines to tware Engineering	Contents Table of Contents
2.	2.6.1 Systems and Enterprise Architectures		24
2.	2.6.2 Architectural Design Patterns		25
2.	2.6.3 Architectural Design Patterns Consoli	dation	26
2.	2.6.4 Enterprise Architecture Frameworks		26
2.7	Process Methodologies and Approaches -	Lifecycle-Usability	28
2.8	Essentials in Methodologies, Approaches	and Usability Techniques	29
2.	2.8.1 Software Success and Failure Factors		29
2.	2.8.2 Variations in System Development Li	fecycle (SDLC)	30
2.	2.8.3 Types of Methodologies and Approach	hes	30
2.9	System's Models' Based Referential Calil	oration	32
2.10	0 Essentials in System-Models' based Refer	rential Calibration	32
2.	2.10.1 Dimensions and Consequent Heuristic	es Adaptive Calibration	33
2.	2.10.2 Software Architectural Quality Heuris	stics	34
2.	2.10.3 API-Usability Heuristics		34
2.	2.10.4 User-Interface Quality Heuristics		35
3	RESEARCH METHODOLOGY		36
3.1	Multi-Models' Consolidated Meta-Model	ing Approaches	36
3.2	The Research Process and Appropriate M	ethodology	37
3.	3.2.1 Qualitative Research and Analysis Mo	otivation	37
3.	3.2.2 Research Methodology and 'Semi-Str	uctured Qualitative Studies' (SSQS)	37
3.3	Generalized Hypothesis Derivation		40
3.	3.3.1 Research Questions and Methodology	,	41
3.4	Incorporating Research Methodology into	Proposed Framework	42
3.	3.4.1 Framework's Usability Extension App	paratus	44
4	PROPOSED FRAMEWORK		47
4.1	Solution Domain		47
4.2	Proposed Framework		48
4.	.2.1 Features Relative Usability Illustratio	n Technology – FRUIT	48
4.	.2.2 Framework Techniques and Concepts		49
4.3	Usability Models' Consolidation		50
4.4	Usability Directive Techniques		53
4.5	Usability Component-Based Platform		55
4.6	Usability's Organizational Throughput		57
4.7	The Framework's Directive Anatomy and	Directive Hives	60

MS (SE) – Thesis – S	4 Session 2011-14	A Framework for Extending Usability D Software Engineering	•	Contents Table of Contents
4.7.1	Directive's Base	e-Line Statements and Definitions		61
4.7.2	Directive's Mul	ti-Models' Switchability and Splitability		61
4.7.3	Directive's Prof	filing Relations & Usability-Units		61
4.7.4	Directive's Inte	gration and Environmental Variables		63
4.7.5	Directive's Rea	dy-Form States and Usability-Unit Cases		63
4.7.6	Directive's Non	nenclature, Metaphor Inferences and Voc	cabulary	64
4.7.7	Directive's Deg	ree of Hybrid Multidimensional Express	ions	65
4.7.8	Directive's Co-	Directive Behavior and Activity-Stream	Management	66
4.7.9	Directives' Inter	rnal Design Dimensionality and Construc	ction Properties	67
4.7.10	Directive Provis	sions for 'Production relative Profiling' –	- Artifacts Centralizat	tion 70
4.7.11	Directive's Resp	ponsive and Adaptive Design		71
4.8 Fra	mework's Usabi	lity Integration Modules		71
4.8.1	The QUARC M	odule Directives, Extensions and Usabili	ty Unit Apparatuses	73
4.8.2	The COURT M	odule Directives		87
4.8.3	The MILLS Mo	dule Directives		91
4.8.4	The FIRMS Mo	dule Directives		96
4.8.5	The VERBS Mo	odule Directives		100
4.8.6	The FARMS M	odule Directives		103
4.8.7	The ORGAN M	Iodule Directives		108
4.8.8	The DEPTH Mo	odule Directives		109
4.8.9	The STAFF Mo	dule Directives		110
4.9 Usa	bility Integration	n Apparatuses		111
4.9.1	Usability Cogw	heel Apparatus		112
4.9.2	Usability Map A	Apparatus		115
4.9.3	Usability Comp	ass Apparatus		119
4.9.4	Usability Spectr	rum Apparatus		122
4.9.5	Usability Hourg	alass Apparatus		124
4.9.6	Usability Fabric	Apparatus		126
4.9.7	Usability Lamp	Apparatus		129
4.9.8	Usability Crysta	al Apparatus		131
4.9.9	Usability Nucle	us/Artifacts Apparatus		134
4.9.10	Usability Matur	ity Apparatus		137
4.9.11	Usability Them	e Apparatus		139
4.9.12	Usability Magn	ifier Apparatus		142
4.9.13	Usability Collab	poration Apparatus		147

5	QUALITATIVE ANALYSIS AND VALIDATION	154
5.1	Justifying Research Hypotheses, Questions and Outcomes	154
5.1	.1 Adaptive Techniques and Qualitative Validation	155
5.1	.2 Discount-Usability and Heuristics for Framework's Qualitative Analysis	155
5.1	.3 Proposed-Framework Artifacts' Validation	157
5.1	.4 Qualitative Evaluators and Participant Selection	158
5.1	.5 Conducting Evaluation Sessions and Feedback Scenarios	159
5.2	Qualitative Heuristic-Evaluation's Profiles and Summary	161
5.2	.1 Heuristic 1 – Well-Designed Frameworks are Simple	161
5.2	.2 Heuristic 2 – Well-Designed Framework Must Be Explicitly Designed	163
5.2	.3 Heuristic 3 – Well-Designed Framework is Part of the Ecosystem	164
5.2	.4 Heuristic 4 – Well-Designed Frameworks Are Expensive to Design	165
5.2	.5 Heuristic 5 – Well-Designed Frameworks Borrow From the Past	166
5.2	.6 Heuristic 6 – Well-Designed Frameworks Are Designed to Evolve	167
5.2	.7 Heuristic 7 – Well-Designed Frameworks Are Full of Trade-Off	169
5.2	.8 Heuristic 8 – Well-Designed Frameworks Are Integrated	170
5.2	.9 Heuristic 9 – Well-Designed Frameworks Are Consistent	171
5.2	.10 Heuristic 10 – Well-Designed Frameworks Are Testable	172
5.2	.11 Heuristic 11 – Well-Designed Frameworks Have Unique Design Fundamentals	173
5.2	.12 Heuristic 12 – Well-Designed Frameworks Have an Optimal Learning Curve	175
5.3	Qualitative Analysis Results and Framework Advancements	176
5.3	.1 Summarizing Key Findings for Qualitative Analysis Evaluation	176
5.4	Framework Contributions, Compatibility and Credibility	178
5.5	Smart Heuristics and Hybrid Multidimensional Expandability	179
6	FRAMEWORK DISCUSSION AND USAGE	181
6.1	Justifying Framework Research and Credibility	181
6.2	Usage Limitations and Profiling Extensions	182
6.3	Framework's Modular Architecture	183
6.4	New Apparatus Derivations and Usage Incentives	186
6.5	Multidimensional Expression Grammar and Hybrid Linguistics	188
6.6	Framework Aftermath, Techniques Identification and Extensibility	190
6.7	Component-Metadata Driven Progression	196
6.8	Implications for Future Research	197
6.9	Usability-Scheming and Apparatuses Cooperation	197

MS (SE) – 4 Thesis – Session 2011-14	A Framework for Extending Usability Disciplines to Software Engineering	Contents Table of Contents
7 Conclusion		202
8 APPENDICES		207
8.1 Appendix A		207
8.1.1 Software Archite	ctural Heuristics	207
8.1.2 API Usability He	euristics	210
8.1.3 GUI Quality Heu	ristics	211
8.2 Appendix B		213
8.3 Appendix C		219
8.3.1 The COURT Mo	dule Directives	219
8.3.2 The MILLS Mod	lule Directives	220
8.3.3 The FIRMS Mod	lule Directives	223
8.3.4 The FARMS Mo	dule Directives	224
8.3.5 The ORGAN Mo	odule Directives	225
8.3.6 The DEPTH Mod	dule Directives	225

From: Muhammad Bilal Munir Supervisor: Dr. Arif Mushtaq

8.3.7 The STAFF Module Directives

REFERENCES

226

227

LIST OF TABLES

Table 1 - Making Software - How Usable Are Your APIs?	18
Table 2 - The Software Architecture and Design	25
Table 3 - The Rows of the Zachman-Framework	28
Table 4 - The Columns of the Zachman-Framework	28
Table 5 - Approach Categories Against Methodologies	31
Table 6 - Usability Models' Consolidation	52
Table 7 - Usability Directive Techniques	54
Table 8 - Usability Component-Based Platform	56
Table 9 - Usability's Organizational Throughput	58
Table 10 - Directive Ready-Form States	63
Table 11 - QUARC Module's HIGGS Directives	75
Table 12 - QUARC Module's DELTA Directives	77
Table 13 - QUARC Module's BOSON Directives	78
Table 14 - QUARC Module's DRIFT Directives	79
Table 15 - QUARC Module's MESON Directives	81
Table 16 - QUARC Module's EMITS Directives	82
Table 17 - QUARC Module's ATOMS Directives	83
Table 18 - QUARC Module's FOTON Directives	85
Table 19 - QUARC Module's CYCLE Directives	86
Table 20 - Framework's Usage-Modes	183
Table 21 - Framework's New Apparatuses	187
Table 22 - Framework's New Techniques	190

LIST OF FIGURES

Figure 1 - The CSCW Matrix [52][74]	21
Figure 2 – Zachman-Framework [99]	27
Figure 3 - Thesis Research Process Methodology	39
Figure 4 - Usability-Extension	43
Figure 5 - Research Concepts' Assertion Cycle	45
Figure 6 - Framework's Usability Techniques	51
Figure 7 – Framework's Usability-Units	76
Figure 8 - Usability-Cogwheel	114
Figure 9 - Usability-Map	117
Figure 10 - Usability-Compass	120
Figure 11 - Usability-Spectrum	123
Figure 12 - Usability-Hourglass	125
Figure 13 - Usability-Fabric	128
Figure 14 - Usability-Lamp	130
Figure 15 - Usability-Crystal	133
Figure 16 - Usability-Nucleus/Artifacts	135
Figure 17 - Usability-Maturity	138
Figure 18 - Usability-Theme	140
Figure 19 - Usability-Magnifier	143
Figure 20 - Usability-Collaboration	149
Figure 21 - Usability-Architecture	185
Figure 22 - Usability-Scheme	201