POWER ECONOMIC DISPATCH USING WATER CYCLE ALGORITHM

By Sadaqat Naveed

Bahria University Islamabad Campus – Pakistan

POWER ECONOMIC DISPATCH USING WATER CYCLE ALGORITHM

A Thesis Presented to

Bahria University Islamabad

In partial fulfillment of the requirement for the degree of

MS (Electrical Engineering)

By

Sadaqat Naveed Registration Number 32379 Enrollment Number 01-244122-076

SPRING, 2014

Dedication

Dedicated to my loving parents

Sadaqat Naveed Registration Number 32379 Enrollment No. 01-244122-076

ACKNOWLEDGEMENTS

I would like to thank my Supervisor; Sh. Saaqib Haroon–Assistant Professor UET, Taxila for his time, guidance and help; which went a long way in the completion of this thesis. I also have a deep appreciation for Mr. Naveed Ahmed Khan; without whose help this research would not have been possible.

I would further like to express my gratitude to: Mr. Zahid Zaheer Bhatty for his help and guidance throughout the research, and Mr. Sabir for his contribution in mathematical work. I would like to extend my deepest appreciation to all those who assisted me in this research.

In the end, I would like to thank my family for their endurance, support, love and help during the progression of this research.

Sadaqat Naveed Registration Number 32379 Enrollment No. 01-244122-076

ABSTRACT

Modern living standards, industrial development and population escalation has altered various aspects of traditional power industry. This changed situation has altered power generation practice due to concerns like rapidly increasing fuel cost, ever growing electricity demand, environmental pollution etc. Therefore, competition in electricity market has been increased to ensure provision of electricity to the consumers with highest quality at minimum cost.

In power generation, the operational planning is a major activity which includes the superlative employment of the available energy resources subjected to various constraints. Economic dispatch (ED) is the extremely challenging part of power system operational planning and is defined as a complex constrained engineering optimization problem that aims to calculate power generation of the generating units in a power system for minimum generation cost, subject to constraints.

Traditionally, Economic Dispatch (ED) has been expressed as a convex optimization problem solved with the help of conventional optimization techniques. The conventional techniques Include Equal Incremental Cost Criterion, Newton's Method, Lambda Iteration Method, Linear Programming, Non-Linear Programming, Dynamic Programming etc. But economic dispatch in modern power systems is highly complex due to non-smooth (or non-convex) objective functions and various newly added constraints. The conventional optimization techniques are not capable in effectively solving this complex problem. In literature, various stochastic optimization techniques have been employed to solve non-convex economic dispatch problem and the research is being continued to achieve the best possible solution.

This research presents implementation of Water Cycle Algorithm (WCA) on economic dispatch problem. WCA is a novel metaheuristic population based algorithm, recently introduced for solving constrained engineering optimization problems. In this research, WCA has been tested on various standard test systems and its effectiveness has been verified by comparing the simulation results with those of other algorithms in literature. Simulation results have been calculated using Matlab.

Table of Contents

ABSTI	ABSTRACT			
LIST OF FIGURES		XIII		
LIST OF TABLES				
LIST OF ABBREVIATIONS		XVI		
CHAPTER 01		1		
INTRO	DUCTION	1		
1.1.	Introduction	2		
1.2.	Power System Operational Planning	3		
1.3.	Problem Statement	4		
1.4.	1.4. Overview of Thesis			
CHAPTER 02		7		
ECONOMIC DISPATCH OF POWER SYSTEM		7		
2.1.	2.1. Economic Dispatch			
2.2.	Characteristics of Thermal Units	8		
2.2.1	. Convex Characteristics	8		
2.2.2	2. Incremental Heat Rate Characteristics	9		
2.2.3	. Unit Heat Rate Characteristics	10		
2.2.4	Non-Convex Characteristics	11		

2.2.5. Multi-valve Thermal Unit	11
2.2.6. Multiple Fuels Generating Unit	12
2.2.7. Incremental Heat Rate Characteristics	13
2.3. Constraints in Economic Dispatch	14
2.3.1. Equality Constraints	14
2.3.2. Inequality Constraints	15
2.3.2.1. Generator Constraints	15
2.3.2.2. Voltages Constraints	16
2.3.2.3. Transformer Tap Setting Constraints	16
2.3.2.4. Spinning Reserve Constraints	16
2.3.2.5. Transmission Line Constraints	17
CHAPTER 03	
OPTIMIZATION TECHNIQUES	
3.1. Introduction	
3.2. Optimization Techniques for Economic Dispatch	19
3.2.1. Conventional Techniques	19
3.2.1.1. Equal Incremental Cost Criteria	19
3.2.1.2. Lambda Iteration Method	22
3.2.1.3. Gradient Search Method	24
3.2.1.4. Newton's Method	27

3.2.2. Stochastic Optimization Techniques	27
3.2.2.1. Particle Swarm Optimization	28
3.2.2.2. Artificial Bee Colony Algorithm	30
CHAPTER NO. 04	
LITERATURE REVIEW	
4.1. Literature Review of Economic Dispatch	33
CHAPTER 05	
WATER CYCLE ALGORITHM	
5.1. Water Cycle Algorithm	42
5.1.1. Steps of WCA	43
5.1.1. Implementation of WCA	46
CHAPTER 06	
SIMULATIONS & RESULTS	
6.1. Test Systems	
6.2. Data Acquisition	
6.3. Output Results	49
6.3.1. Test System-I	50
6.3.2. Test System-II	52
6.3.3. Test System-III	54
6.3.4. Test System-IV	56
	xi

CHAI	CHAPTER 07	
DISCUSSION AND CONCLUSION		58
7.1.	Discussion and Conclusion	59
REFE	RENCES	60
APPENDIX-A		63
Test Systems Data		63
A.1.	Test System I 3-Machines system with $P_D = 850 \text{ MW}$	63
A.2.	Test System II 6 Machine Test System with $P_D=700 \text{ MW}$	64
A.3.	Test System III13-Machines system with $P_D = 1800MW$	65
A.4.	Test System IV15-Machines system with $P_D = 2630 \text{ MW}$	66

List of Figures

Figure 1-1 Electricity Generation Share by Sources	2
Figure 1-2 Power System Operational Planning	3
Figure 2-1 Typical thermal power plant with single valve	8
Figure 2-2 Input-output characteristic curve of single valve thermal unit	9
Figure 2-3 Incremental heat rate curve of single valve steam unit	10
Figure 2-4 Unit heat rate curve of single valve steam unit	10
Figure 2-5 Typical input-output characteristics curve of 4-valve thermal unit	12
Figure 2-6 Input-output characteristics curve of multiple fuel unit	13
Figure 2-7 Incremental heat rate curve of 4-valve steam unit	13
Figure 3-1 Flow chart of Equal incremental cost	22
Figure 3-2 Flow chart of Lambda iteration	23
Figure 3-3 Flow Chart of Gradient Search	26
Figure 3-4 Flow Chart of PSO	28
Figure 5-1 Schematic illustration of flow of water towards sea	42
Figure 5-2 Flow chart of WCA	45
Figure 5-3 Implementation of WCA	47
Figure 6-1 Cost Curve for 3-Machines non-convex test system with P_D 850 MW	50
Figure 6-2 Cost Curve for 6-Machines Convex Test System with P_D 850 MW	52
Figure 6-3 Cost Curve of 13-Machines IEEE standard test system with P_D 1800 MW	54

List of Tables

Table 6-1 Comparison of Different Techniques for 3-Machines System	51
Table 6-2 Comparison of Different Techniques for 6-Machines System	53
Table 6-3 Comparison of Different Techniques for 13-Machines IEEE Standard Test Standard Te	System
	55
Table 6-4 Comparison of Different Techniques for 15-Machines System	57
Table A-1 3-Machines test system generator's data with $P_D = 850$	63
Table A-2 6-Machines test system generator's data with P_D 700 MW	64
Table A-3 Transmission loss coefficient for 6-Machines test system	64
Table A-4 13-Machines test system generator's data with $P_D = 1800 \text{ MW}$	65
Table A-5 15-Machines test system generator's data with $P_D = 2630 \text{ MW}$	66

List of Abbreviations

HDIP	Hydrocarbon Development Institute of Pakistan
ED	Economic Dispatch
DP	Dynamic Programming
EP	Evolutionary Programming
PSO	Particle Swarm Optimization
GA	Genetic Algorithm
ABC	Artificial Bee Colony
ANN	Artificial Neural Networks
WCA	Water Cycle Algorithm
DED	Dynamic Economic Dispatch
E&ED	Emission and Economic Dispatch
MW	Mega Watt
Btu	British Thermal Units
CGPED	Compensating Generation Plan Economic Dispatch
MPSO	Modified Particle Swarm Optimization
NPSO	New Particle Swarm Optimization
DE	Differential Evolution
PSDEO	Particle Swarm Differential Evolution Optimization
CEED	Combined Economic Emission Dispatch
DEED	Dynamic Economic Emission Dispatch