Techno-Economic Analysis of a Hybrid Grid-Connected/PV/Wind System in Pakistan

By

Saima Ishaq

Bahria University Islamabad Campus – Pakistan

Dedication

Dedicated to my loving parents

Saima Ishaq

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Shahid Mahmood Khan for his time, guidance and help, which went a long way in the completion of this thesis.

I would further like to express my gratitude to Sadaqat Naveed and Faheem Haroon (APCOMS) for their help and guidance throughout the research. I would like to extend my deepest appreciation to Dr. Muhammad Najam-ul-Islam (HoD) and all those who assisted me in this research.

In the end, I would like to thank my family for their endurance, support, love and help during the progression of this research.

Saima Ishaq

ABSTRACT

In view of the current energy crisis prevailing in Pakistan, renewable energy resources are considered as practical and economical alternatives. In this work technical as well as economic aspects of hybrid photovoltaic (PV) and wind systems connected to commercial grid, are investigated for selected locations of Pakistan. A pre-feasibility study of the renewable resources was done using NREL's Geospatial Toolkit software that has a broad meteorological database e.g. daily, monthly and annual profiles of solar irradiance, temperatures, wind speeds etc. and also a database of various renewable energy system components from different manufacturers. The locations were chosen on the basis of favorable environmental criteria based on meteorological data e.g. daily, monthly and annual profiles of solar irradiance, temperatures, wind speeds etc. The proposed hybrid system was simulated in NREL's HOMER software over the life span of the system guaranteed by the manufacturers. Performances and economic impacts of various components constituting this system in different locations were then analyzed and a conclusion was drawn with respect to the least calculated Net Present Cost (NPC). Finally, an optimum hybrid system with most appropriate components was suggested for such locations. The consumer end advantages of such systems over grid-alone system were also presented.

The system was implemented at four different locations in Pakistan. Keeping in view the current energy crisis in Pakistan, the system would be able to input adequate amount of energy into the main grid.

The system model for four different locations was run in HOMER software for its cost and technical analysis. With a large number of components available in a variety of prices the decision making for equipment procurement and implementation needs to be supported by economical and technical considerations. The systems suggested were economically and technically feasible as well as reliable. HOMER works for both grid-connected as well as stand-alone systems. It carries out a set of algorithms for each proposed system and demonstrates the optimum results keeping in view the optimum combination of meteorological resources and most economical components. The 'sensitivity analysis'

performed by HOMER is on the basis of the set of inputs and components suggested by the user. Therefore, the overall process in general is an iterative procedure.

Table of Contents

ABSTRACT	ix
List of Figures	xiii
List of Tables	xiv
List of Abbreviations	XV
Chapter 1	1
Introduction	1
1.1. Introduction	2
1.2. Overview of thesis	8
Chapter 2	8
Solar Energy	8
2.1. Solar Energy Background and Applications	10
2.1.1. Solar Energy Essentials	10
2.2. Solar Energy Uses and Applications	11
2.2.1. Solar Energy for the Production of Electricity	11
2.2.2 Working of Solar Technology	12
2.2.3 Sun as a Source of Energy	12
2.3.1 The Working of Photon Energy	12
2.3.2 Solar Energy Conversion	13
2.4. Solar Energy Advantages	13
2.4.1. Comparison with other Fuels	13
2.4.2. Global Warming and Solar Energy	14
2.4.3. Advancements in the Research of Solar Energy	14
2.4.4. Development of Solar Energy in Pakistan	15
Chapter 3	17
Wind Energy	17
3.1. Introduction	18
3.2. Wind Generation	18
3.2.1. Wind Power Generation	19
3.2.2. Background	19

3.2.3. Working of a Wind Turbine:	21
3.2.4. Types of Wind Turbine:	21
3.3. Parts of a Wind Turbine	22
3.4. Configuration of a Turbine:	24
3.4.1. Site of a Turbine:	25
3.5. Advantages:	25
3.6. Challenges:	26
Chapter 4	27
Literature review	27
4.1. Literature Review	28
Chapter 5	36
Methodology	36
5.1. Selection of System	37
5.2. Method and Boundary Conditions	37
5.3. Selection of Locations	38
5.4. Simulation	39
5.5. Input Parameters of HOMER	40
5.5.1. Solar Resource	40
5.5.2. Wind Resource	43
5.5.3. Converter	47
5.5.4. Grid	47
5.6. Sensitivity Analysis	48
Chapter 6	50
Results and Conclusion	50
6.1. Gilgit	51
6.1.1. Optimized Results	51
6.1.2. Cash Flow Summary	51
6.2. Juzzak	54
6.2.1. Optimized Results	54
6.2.2. Cash Flow Summary	
6.3. Gwadar	57
6.3.1. Optimized Results	57
6.3.2. Cash Flow Summary	57
6.4. Multan	60

6.4.1. Optimized Result	60
6.4.2. Cash Flow Summary	60
6.5. Conclusion	62
6.6. Recommendations for future work	64
References	66
APPENDIX-A	69
Solar radiation data	69
A.1. Gilgit	69
A.2. Juzzak	71
A.3. Gwadar	73
A.4. Multan	75
APPENDIX-B:	77
Wind Resource Data	77
B.1. Gilgit	77
B.2. Juzzak	79
B.3. Gwadar	81
B.4. Multan	83

List of Figures

Figure 1-1 Energy supply and demand in Pakistan	2
Figure 1-2 Primary energy supplies by source	3
Figure 1-3 Operator wise capacity	4
Figure 1-4 RE database	7
Figure 3-1 Working of a wind turbine	21
Figure 5-1 Daily load profile	
Figure 5-2 Annual daily radiation and wind speed data [52,53]	38
Figure 5-3 Hybrid system model constructed in Homer	40
Figure 5-4 Synthetic wind speed time series with no autocorrelation ($r^{1} = 0.0$)	
Figure 5-5 Synthetic wind speed time series with medium autocorrelation ($r1 = 0.5$)	
Figure 5-6 Synthetic wind speed time series with strong autocorrelation ($r1 = 0.96$)	
Figure 5-7 Weibull distribution.	
Figure 5-8 Steps of hybrid system simulation in HOMER software	
Figure 6-1 Optimized results for Gilgit	
Figure 6-2 Cash flow summary for Gilgit	
Figure 6-3 Cash flow summary w.r.t. components	
Figure 6-4 Monthly Average electric production for Gilgit	
Figure 6-5 Optimized results for Juzzak	
Figure 6-6 Cash flow summary for Juzzak	
Figure 6-7 Cash flow summary w.r.t. components	
Figure 6-8 Monthly electric production for Juzzak	
Figure 6-9 Optimized results for Gwadar	
Figure 6-10 Cash flow summary for Gwadar	
Figure 6-11 Cash flow summary w.r.t components	
Figure 6-12 Monthly electric production for Gwadar	
Figure 6-13 Optimized results for Multan	
Figure 6-14 Cash flow summary for Multan	
Figure 6-15 Cash flow summary w.r.t components	
Figure 6-16 Monthly electric production for Multan	
Figure 6-17 Total NPC vs. Wind speed	
Figure A-1 Scaled daily profile for Gwadar [53].	
Figure A-2 Scaled daily profile for Juzzak [53]	
Figure A-3 Scaled daily profile for Gwadar [53].	
Figure A-4 Scaled daily profile for Multan [53].	
Figure B-1 Scaled wind speeds for Gilgit [53].	
Figure B-2 Scaled wind speeds for Juzzak [53].	
Figure B-3 Scaled wind speeds for Gwadar [53].	
Figure B-4 Scaled wind speeds for Multan [53].	84

List of Tables

Table 1-1 Resource potential of renewable resources	6
Table 5-1 Latitude and Longitude of selected locations	38
Table 6-1 Annual energy production and renewable fraction for Gilgit	53
Table 6-2 Annual energy production and renewable fraction for Juzzak	56
Table 6-3 Annual energy production and renewable fraction for Gwadar	59
Table 6-4 Annual energy production and renewable fraction for Multan	62
Table A-1 Monthly Clearness index and daily radiation for Gilgit [53]	69
Table A-2 Monthly Clearness index and daily radiation for Juzzak [53]	71
Table A-3 Monthly Clearness index and daily radiation for Gwadar [53].	73
Table A-4 Monthly Clearness index and daily radiation for Multan [53].	75
Table B-1 Monthly wind speeds for Gilgit [53]	77
Table B-2 Monthly wind speeds for Juzzak [53]	79
Table B-3 Monthly wind speeds for Gwadar [53]	81
Table B-4 Monthly wind speeds for Multan [53]	83

List of Abbreviations

NPC Net Present Cost

COE Cost of Energy

RF Renewable fraction

PV Photovoltaic

HOMER Hybrid Optimization Model for Electric Renewables

NREL National Renewable Energy Laboratories, USA

WAPDA Water and Power Development Authority

NASA National Aeronautics and Space Administration

kW Kilo Watt

kWh Kilo Watt hour

MW Mega Watt

O&M Operation and Maintenance