USER PROFILING THROUGH ARTIFICIAL IMMUNE SYSTEM

By Ahmad Raza

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE AT BAHRIA UNIVERSITY ISLAMABAD NOVEMBER 2013

BAHRIA UNIVERSITY DEPARTMENT OF COMPUTER SOFTWARE ENGINEERING

The undersigned hereby certify that they have read and recommend to the Faculty of Graduate Studies for acceptance a thesis entitled "User Profiling Through Artificial Immune System" by Ahmad Raza in partial fulfillment of the requirements for the degree of Master of Science.

	Dated: November 2013
C	
Supervisor:	
	Dr. Wasif Afzal
Readers:	

Dedicated to Sir Wasif Afzal for his continuous efforts and guidance and to my parents.

Table of Contents

Ta	able o	of Con	tents	\mathbf{V}
Li	st of	Tables	S	viii
Li	st of	Figure	es	ix
\mathbf{A}	bstra	ct		X
A	ckno	wledgn	nent	xi
1	Intr 1.1		on To Web ODUCTION	1 1
2	BA 6		OUND AND MOTIVATION uction	6
3	Imr	nune S	ystem: Natural and Artificial	10
	3.1	Introd	uction	10
	3.2	Proces	ssing of AIS	11
	3.3		al Immune System	11
		3.3.1	B-Cells	12
		3.3.2	T-Cells	12
		3.3.3	Negative Selection	13
		3.3.4	Clonal Selection Principle	13
	3.4	Artific	ial Immune System	13
		3.4.1	Step 1: Data Extraction	14
		3.4.2	Step 2: Updating Terms Weights	15
		3.4.3	Step 3: Remove Unwanted Terms	15
		3.4.4	Step 4: Add Terms	16

		3.4.5 Step 5: Reorganization of Profile	17
	3.5	Clonal Selection	17
	3.6	Negative Selection	18
	3.7	Problems in Negative Selection	21
	3.8	Danger Theory	21
4	App	olications of Artificial Immune System	22
	4.1	AIS in Web Mining	22
	4.2	Distributive Data	22
	4.3	Volatile Data	23
	4.4	Large Data Volume	23
	4.5	Data Quality	23
	4.6	Data Type	23
	4.7	AIS As Intrusion Detection	24
	4.8	AIS As Data Mining Tool	24
5	Res	earch Methodology	25
	5.1	Research Methodology We Follow	25
		5.1.1 Quantitative Research	26
		5.1.2 Other Methods	26
	5.2	Need of AIS Based Search	27
	5.3	Proposed Solution	28
6	Enh	nanced Artificial Immune System (EAIS)	31
	6.1	Introduction	31
	6.2	The Process	32
	6.3	Search Engine Training Methodology	33
	6.4	AIS Vs EAIS	36
	6.5	Comparison With Other Search Engine	37
7	Sim	ulation and Testing	40
•	7.1	Introduction	40
	7.2	Simulator Overview	40
	7.3	System Stats	42
	7.4	Search Mechanism	44
	7.5	Data Sources	45
	7.6	System Information	45
	7.7	Testing	46
	7.8	Efficiency Comparison	47
		•	

	7.9	User Profile Efficiency	48
	7.10	Search Query Suggestions	4
8	Con	nparison and Conclusion	5
	8.1	Why we use AIS	5
		8.1.1 Ontology Based User Profiling	5
	8.2	Research Questions	5
	8.3	Conclusion	5
	8.4	Future Work	5
R	ihling	ranhy	5

List of Tables

6.1	Traditional AIS Vs Enhanced AIS	37
6.2	Search Engine Comparison	38
7.1	Search Stats against Term Apple	44
7.2	Simulator Stats	46
7.3	Simulator Accuracy Test	47
7.4	Searching Efficiency Test	47
7.5	Algorithm efficiency for Profile Base Search	48
8.1	Ontology vs AIS	52

List of Figures

3.1	Adding Terms [1]	17
6.1	Process	34
6.2	Search Engine Training Tree	35
7.1	Username Request Form	41
7.2	Search Engine Main Search Form	42
7.3	Search Keywords Suggestion System	43
7.4	Keyword Suggestion Network	50
8.1	Geography base ontology	53
8.2	Ontology Definition	53
8.3	Semantic Network	56

Abstract

An Enhanced Artificial Immune system(EAIS) is suggested in this thesis. The proposed system is an enhancement to the traditional Artificial Immune System (AIS) which will monitor user activities during search and will build searching profile for that user. We will use both implicit and explicit ways of declaring user profile and will maintain it according to five steps of AIS. The AIS will be modified by combining some extra parameters to make it more reliable and enable it to give nearest possible search results. This will enhance user experience while searching over Internet. It is also observed that some search engines provide misleading information about well known keywords and terms that cause invalid search results.

To validate the performance of these new models simulation study is carried out by developing a search engine base supporting both AIS and EAIS. The results of simulation are compared with those obtained with Simple Searching algorithm and AIS algorithm. Improved identification and equalization performance of the proposed method have been observed in all cases.

Acknowledgment

I thankful to almighty God who gave me the courage to complete my thesis in time. It will be unjust not to mention the names of those who helped me in getting knowledge and guidance. I am thankful to my teachers, supervisor Dr. Wasif Afzal, Assistant professor at Bahria University Islamabad for his cooperation and continuous suggestions throughout this thesis work. I am also thankful to my parents, brothers and friends and specially thankful to Dr. Shahzad Khalid Associate Professor Bahria University Islamabad for tips on thesis writing and all those who helped me in any way in completing this thesis.